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“Big data” world

Problem: Estimate a high-dimensional object
from (relatively) few corrupted data points.

Assumption: The object is simple: low-dimensional
structure.
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Underdetermined linear system

=

Few linear measurements about a
high-dimensional object

How can we possibly recover the
object?

The object has low-dimensional
representation (sparsity)

Many problems are naturally of this form.

Even more problems can be forced into this form!
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Huge range of “big data” applications

compressed sensing
MRI

model selection via
LASSO

low rank matrix
recovery

(Netflix Prize)

Beautiful mathematical core!

super-resolution microscopy radar imaging
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Structure of this talk

basic sparse signal recovery
blafalkjaflakj

=

A has random
uncorrelated columns

super-resolution microscopy
blfadlkfjaa

A has deterministic
highly correlated columns

radar imaging
(main novelty)

A has random
highly correlated
columns
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Basic theory
of sparse signal recovery

E. Candès
D. Donoho
J. Romberg

T. Tao
...
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Prototypical model

=

Assumptions:

(1) y is M dimenstional

(2) Sparsity: x has at most S nonzero entries (S < M)

(3) Properties of A: Aij ∼ N (0, 1)
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If we knew where nonzeros are ...

=

The search for nonzeros is combinatorial in nature!

Recovery by convex programming (relaxation):

minimize
∑

i

|xi|
︸ ︷︷ ︸

l1-norm ‖x‖1

subject to y = Ax

Min norm problem is a convex program and computationally tractable
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Why `1 may not always work
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Dual certificates

minimize ‖x‖1 such that y = Ax

x∗ solution iff there exists

v ⊥ null(A) and v ∈ Co ⇔ v ∈ ∂‖x∗‖
null(A)

descent cone

row(A)

polar cone
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Construction of dual certificate

dual
certificate

v ∈ row(A) and

{
vi = sgn(x∗i ) x∗i 6= 0

|vi| < 1 x∗i = 0

+1

-1

sgn(x∗)
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Construction of dual certificate

dual
certificate

v ∈ row(A) and

{
vi = sgn(x∗i ) x∗i 6= 0

|vi| < 1 x∗i = 0

sgn(x∗)

EvSc = 0

Least-squares solution to vS = sgn(x) :

AS= AScA

support

o↵-support

�1

vS

vSc A⇤
Sc

A⇤
S AS AS

A⇤
S

=
sgn(x⇤)
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Sparse recovery guarantee

minimize ‖x‖1 subject to y = Ax

Assume:

x is arbitrary N -dimensional S-sparse vector

data vector y is M -dimensional with

M ≥ S log(N)

Aij ∼ N (0, 1)

Then, with high probability, l1 solution is exact!

The log is needed to bound deviations of vSc around EvSc = 0.
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Super-resolution microscopy
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Abbe’s diffraction limit for microscopy
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Nobel Prize in Chemistry 2014

conventional microscopy single-molecule microscopy

To make imaging faster, need a powerfull algorithm for sparse signal
recovery problem!
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Mathematical model

0 1

Object

x(t) =
∑

s

xsδ(t− ts)

0 1

λc = 1/fc
Detector

s(t) = (flow ? x)(t)

=
∑

s

xsflow(t− ts)

x = [x0 · · ·xN−1]T

x is sparse

y = Ax

A ... 2fc ×N low-frequency DFT

Akt = e−i2πkt/N ,
∣∣k
∣∣ ≤ fc
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Columns of A are highly correlated

Solve:
minimize ‖x‖1 subject to y = Ax

Question:

When does l1 work?

First observation:

A = [a1, . . .aN ] 2fc ×N

Akt ... Gaussian:
〈al,al+1〉 ≈ 1√

2fc

Akt ... ei2πkt,
∣∣k
∣∣ < fc

〈al,al+1〉 ≈ 1
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The dual polynomial for super-resolution

Akt = e−i2πkt/N , |k| ≤ fc ⇒ v(t) =

fc∑

m=−fc
v̂me

i2πmt
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Akt = e−i2πkt/N , |k| ≤ fc ⇒ v(t) =

fc∑

m=−fc
v̂me

i2πmt

� �c

�1

1

E. Candès and C. Fernandez-Granda ’14

L1 works if spikes are further than 2λc
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The dual polynomial for super-resolution

Akt = e−i2πkt/N , |k| ≤ fc ⇒ v(t) =

fc∑

m=−fc
v̂me

i2πmt

< �c

�1

1

If spikes are closer than λc ⇒ L1 breaks
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The dual polynomial for super-resolution

Akt = e−i2πkt/N , |k| ≤ fc ⇒ v(t) =

fc∑

m=−fc
v̂me

i2πmt

< �c

�1

1

Bernstein theorem:

Consider: v(t) =
∑fc

k=−fc v̂ke
−i2πkt with

∣∣v(t)
∣∣ ≤ 1 for all t

Then:
∣∣v′(t)

∣∣ ≤ 2fc for all t.
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The dual polynomial for super-resolution

Akt = e−i2πkt/N , |k| ≤ fc ⇒ v(t) =

fc∑

m=−fc
v̂me

i2πmt

< �c

�1

1

Donoho ’92:

x ≥ 0 ⇒ L1 works if the number of spikes is less than fc + 1
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Super-resolution in the presence of noise

Model:
s = flow ? x̂+ z, ‖z‖1 ≤ δ

Solve:
minimize ‖s− flow ? x̂‖1 subject to x̂ ≥ 0

Theorem: [V. Morgenshtern and E. Candès, 2015]

Assume x ≥ 0, x is r-regular. Then,

‖x̂− x‖1 ≤ δ
(
N

2fc

)2r

.

Key novelty: a set of new tools in Fourier analysis

0

1

⌧ �c ⌧ �c
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Reconstruction of 3D signals from 2D data

Preliminary result: 4 times faster than state-of-the-art

10000 CVX problems solved
TFOCS first order solver

millions of variables
21 / 33



Radar imaging

Recap:

Dual certificate is a tool to analyse success of l1.

Structure of A determines when certificate exists/does not exist.

When Akl are i.i.d. Gaussian, dual certificate is random. It exists
if there are sufficiently many measurements.

In the super-resolution problem, the certificate is deterministic
low frequency trigonometric polynomial. It exists if the spikes
are sufficiently separated.

We will see: in radar, the certificate is random and it approximates
a low frequency trigonometric polynomial.
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Mathematical model

Discretization through band and time limitation

Let L = BT

x(t) =

3L�1X

`=0

x` sinc(tB � `), x` is L periodic

x(t) X(f)

Due to path loss and finite velocity of the targets we may assume:

(⌧̄j , ⌫̄j) 2 [0, T ] ⇥ [0, B]

y(t) is band and essentially time limited as well, and on the order of
BT -dimensional

7 / 34

f(t)

y(t) =
S∑

s=1

xs(TτsFνsf)(t)

=
S∑

s=1

xsf(t− τs)ei2πνst

Goal: recover (xs, τs, νs)
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Time and bandwidth limitations

In practice:

f(t) is bandlimited to BHz

y(t) is observed over T sec

⇒ y(t) is BT -dimensional

Goal: estimate τ and ν with precision higher than 1/B and 1/T

24 / 33



Time and bandwidth limitations

In practice:

f(t) is bandlimited to BHz

y(t) is observed over T sec

⇒ y(t) is BT -dimensional

Goal: estimate τ and ν with precision higher than 1/B and 1/T

y(t) =
∑S

s=1 xsf(t− τs)ei2πνst (super-resolution)

24 / 33



Time and bandwidth limitations

In practice:

f(t) is bandlimited to BHz

y(t) is observed over T sec

⇒ y(t) is BT -dimensional

Goal: estimate τ and ν with precision higher than 1/B and 1/T

y(t) =
∑S

s=1 xsf(t− τs)ei2πνst (super-resolution)

24 / 33



Blurring of time and frequency shifts

input

h(τ, ν) =
∑

s

bsδ(τ − τs)δ(ν − νs)

output

y(t) =

∫∫
h(τ, ν)f(t−τ)ei2πνtdτdν

1
T

1
B

1
T

1
B

sinc(τB) sinc(νT ) ∗ h(τ, ν)

1
T

1
B

band and time-limitation

Resolution achieved by classic Radar via matched filtering is
(
1
B ,

1
T

)
!
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Main result

Notation:

y, f contain samples of y(t), f(t) at the rate 1/B

Columns of A are TτFνf (indexed by τ and ν):

A = F⌫T⌧x BT

� (BT )2

Random probing signal: f` i.i.d. N (0, 1)

x contains xs at location indexed by τ and ν

Solve:
minimize ‖x‖1 subject to y = Ax
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Main result

Solve:
minimize ‖x‖1 subject to y = Ax

Theorem: [Heckel, Morgenshtern, Soltanolkotabi ’15]

Assume:

|τs − τr| ≥
5

B
or |νs − νr| ≥

5

T
, for all s 6= r

and
S . BT log−3 (BT ) .

Then: with high probability, l1 minimization recovers x exactly.
Hence, (τs, νs, xs) are recovered perfectly.

26 / 33



Key novelty: dual polynomial for radar

Recall:

A = F⌫T⌧x BT

� (BT )2

Need:

v(τ, ν) = [FνTτx]H v̂

Ingredient: dual certificate for super-resolution (with separation)
[Candes and Fernandez-Granda ’14]

v(t) =
∑

s csg(t− ts) + corrections

Low pass and concentrated kernel: g(t) =
∑fc

k=−fc ĝke
i2πkt

1

�1

g(t � ts)

� 2�c
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� 2�c
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Key novelty: dual polynomial for radar

Need: v(τ, ν) = [FνTτx]H v̂

Ingredient:

v(t) =
∑

s csg(t− ts) + corrections

low pass and concentrated kernel: g(t) =
∑fc

k=−fc ĝke
i2πkt

1

�1

g(t � ts)

� 2�c

For radar:

v(τ, ν) =
∑

s csgτs,νs(τ, ν) + corrections

gτs,νs(τ, ν) “resembles” g(· − τs)× g(· − νs)
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Key novelty: construction of gτs,νs(·, ·)
Kernel:

gτs,νs(τ, ν) = [FνTτx]H v̂

We can write:

(FνTτx)H =
[
· · · ei2π(τr+νq) · · ·

]
FGH

F is 2D DFT matrix = BT

(BT )2

G F r
BT

T q
BT

x

Choose coefficients:

v̂ = GFH
[
· · · ĝrĝqe−i2π(τr+νq) · · ·

]T

Observe: E
[
FGHGFH

]
= FE

[
GHG

]
FH = I

Therefore: E [gτs,0(τ, 0)] =
∑T

k=−T ĝke
i2πk(τ−τj) = g(τ − τj)
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Random kernel approximates deterministic kernel

Observe: E
[
FGHGFH = I

]

Therefore: E [gτs,0(τ, 0)] =
∑T

k=−T ĝke
i2πk(τ−τj) = g(τ − τj)

Interpolating functions

E
h
G(⌧j ,⌫j)(⌧, ⌫)

i
= Ḡ(⌧ � ⌧j , ⌫ � ⌫j)

Ḡ(0, ⌫)

G(0,0)(0, ⌫)

27 / 34

g⌧s,0(⌧, 0)
g(⌧ � ⌧s)

�1

vS

vSc A⇤
Sc

A⇤
S AS AS

A⇤
S

=
sgn(x⇤)

EvSc = 0

Now we can use:

v(τ, ν) =
∑

s csgτs,νs(τ, ν) + corrections
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Mathematics of information

super-resolution microscopy radar imaging
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Related open problems
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Thank you
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