# Solving Underdetermined Linear Systems with Highly Correlated Columns

Veniamin I. Morgenshtern

Statistics Department, Stanford

**Assumption:** The object is **simple**: low-dimensional structure.

**Assumption:** The object is **simple**: low-dimensional structure.



## signal processing

**Assumption:** The object is **simple**: low-dimensional structure.





statistics

**Assumption:** The object is **simple**: low-dimensional structure.







machine learning

signal processing

statistics



Few linear measurements about a high-dimensional object



Few linear measurements about a high-dimensional object

How can we possibly recover the object?



Few linear measurements about a high-dimensional object

How can we possibly recover the object?

The object has low-dimensional representation (sparsity)



Few linear measurements about a high-dimensional object

How can we possibly recover the object?

The object has low-dimensional representation (sparsity)

Many problems are naturally of this form.



Few linear measurements about a high-dimensional object

How can we possibly recover the object?

The object has low-dimensional representation (sparsity)

Many problems are naturally of this form.

Even more problems can be forced into this form!

## Huge range of "big data" applications



compressed sensing MRI



model selection via LASSO



low rank matrix recovery (Netflix Prize)

## Huge range of "big data" applications



compressed sensing MRI



model selection via LASSO



low rank matrix recovery (Netflix Prize)



super-resolution microscopy



radar imaging

## Huge range of "big data" applications



MRI

model selection via LASSO



low rank matrix recovery (Netflix Prize)

### Beautiful mathematical core!



super-resolution microscopy



radar imaging





basic sparse signal recovery



### super-resolution microscopy





radar imaging
(main novelty)



y = A

A has random uncorrelated columns







radar imaging
(main novelty)

basic sparse signal recovery

y = A

A has random uncorrelated columns

### super-resolution microscopy



A has deterministic highly correlated columns



radar imaging (main novelty)

basic sparse signal recovery

A has random uncorrelated columns

#### super-resolution microscopy



A has deterministic highly correlated columns

radar imaging (main novelty)



A has random highly correlated columns

## Basic theory of sparse signal recovery

E. Candès D. Donoho J. Romberg T. Tao

. . .

### Prototypical model



### **Assumptions:**

(1)  $\mathbf{y}$  is M dimenstional

### Prototypical model



### **Assumptions:**

- (1)  $\mathbf{y}$  is M dimenstional
- (2) Sparsity: x has at most S nonzero entries (S < M)

### Prototypical model



### **Assumptions:**

- (1)  $\mathbf{y}$  is M dimenstional
- (2) Sparsity: x has at most S nonzero entries (S < M)
- (3) Properties of A:  $A_{ij} \sim \mathcal{N}(0, 1)$









The search for nonzeros is combinatorial in nature!



The search for nonzeros is combinatorial in nature!

Recovery by convex programming (relaxation):

minimize 
$$\sum_{\substack{i \\ \text{l1-norm } \|\mathbf{x}\|_1}} |\mathbf{x}||_1$$
 subject to  $\mathbf{y} = \mathbf{A}\mathbf{x}$ 

Min norm problem is a convex program and computationally tractable











## Why $\ell_1$ may not always work



minimize  $\|\mathbf{x}\|_1$  such that  $\mathbf{y} = \mathbf{A}\mathbf{x}$ 



minimize  $\|\mathbf{x}\|_1$  such that  $\mathbf{y} = \mathbf{A}\mathbf{x}$ 


# Construction of dual certificate



# Construction of dual certificate



 $\mathsf{sgn}(\mathbf{x}^*)$ 

# Construction of dual certificate



# Sparse recovery guarantee

minimize 
$$\|\mathbf{x}\|_1$$
 subject to  $\mathbf{y} = \mathbf{A}\mathbf{x}$ 

Assume:

- $\blacksquare$  x is arbitrary N-dimensional S-sparse vector
- $\blacksquare$  data vector  ${\bf y}$  is M-dimensional with

 $M \ge S \log(N)$ 

$$\blacksquare A_{ij} \sim \mathcal{N}(0,1)$$

Then, with high probability, 11 solution is exact!

# Sparse recovery guarantee

minimize 
$$\|\mathbf{x}\|_1$$
 subject to  $\mathbf{y} = \mathbf{A}\mathbf{x}$ 

Assume:

- $\blacksquare$  x is arbitrary N-dimensional S-sparse vector
- $\blacksquare$  data vector  ${\bf y}$  is M-dimensional with

 $M \geq S \log(N)$ 

 $\blacksquare A_{ij} \sim \mathcal{N}(0,1)$ 

Then, with high probability, I1 solution is exact!

The log is needed to bound deviations of  $\mathbf{v}_{S^c}$  around  $\mathbb{E} \mathbf{v}_{S^c} = \mathbf{0}$ .

# Super-resolution microscopy

# Abbe's diffraction limit for microscopy





### Nobel Prize in Chemistry 2014





#### conventional microscopy

#### single-molecule microscopy

## Nobel Prize in Chemistry 2014



#### conventional microscopy

#### single-molecule microscopy

To make imaging faster, need a powerfull algorithm for sparse signal recovery problem!





$$\begin{array}{ll} \mathbf{x} = [x_0 \cdots x_{N-1}]^{\mathsf{T}} & \mathbf{y} = \mathbf{A} \mathbf{x} \\ \mathbf{x} \text{ is sparse} & \mathbf{A} \dots \ 2f_c \times N \text{ low-frequency DFT} \\ & A_{kt} = e^{-i2\pi kt/N}, \ \left|k\right| \leq f_c \end{array}$$

# Columns of ${\bf A}$ are highly correlated

Solve:

minimize 
$$\|\mathbf{x}\|_1$$
 subject to  $\mathbf{y} = \mathbf{A}\mathbf{x}$ 

Question:

When does I1 work?

Solve:

minimize 
$$\|\mathbf{x}\|_1$$
 subject to  $\mathbf{y} = \mathbf{A}\mathbf{x}$ 

**Question:** 

When does I1 work?

First observation:

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_1, \dots \mathbf{a}_N \end{bmatrix} \quad 2f_c \times N$$

$$\begin{array}{ll} A_{kt} \ \dots \ \mathsf{Gaussian}: & \qquad A_{kt} \ \dots \ e^{i2\pi kt}, \left|k\right| < f_c \\ \langle \mathbf{a}_l, \mathbf{a}_{l+1} \rangle \approx \frac{1}{\sqrt{2f_c}} & \qquad \langle \mathbf{a}_l, \mathbf{a}_{l+1} \rangle \approx 1 \end{array}$$

$$A_{kt} = e^{-i2\pi kt/N}, |k| \le f_c \implies v(t) = \sum_{m=-f_c}^{f_c} \hat{v}_m e^{i2\pi mt}$$





E. Candès and C. Fernandez-Granda '14

L1 works if spikes are further than  $2\lambda_c$ 



If spikes are closer than  $\lambda_c \Rightarrow L1$  breaks

$$A_{kt} = e^{-i2\pi kt/N}, |k| \le f_c \Rightarrow v(t) = \sum_{m=-f_c}^{f_c} \hat{v}_m e^{i2\pi mt}$$

Bernstein theorem:

**Consider:**  $v(t) = \sum_{k=-f_c}^{f_c} \hat{v}_k e^{-i2\pi kt}$  with  $|v(t)| \le 1$  for all t**Then:**  $|v'(t)| \le 2f_c$  for all t.



Donoho '92:

 $\mathbf{x} \geq \mathbf{0} \; \Rightarrow \mathsf{L1}$  works if the number of spikes is less than  $f_c + 1$ 

### Super-resolution in the presence of noise

Model:

$$\mathbf{s} = f_{\text{low}} \star \hat{\mathbf{x}} + \mathbf{z}, \quad \|\mathbf{z}\|_1 \le \delta$$

Solve:

minimize 
$$\|\mathbf{s} - f_{\text{low}} \star \hat{\mathbf{x}}\|_1$$
 subject to  $\hat{\mathbf{x}} \ge 0$ 

**Theorem:** [V. Morgenshtern and E. Candès, 2015] Assume  $x \ge 0$ , x is *r*-regular. Then,

$$\|\hat{\mathbf{x}} - \mathbf{x}\|_1 \le \delta \left(\frac{N}{2f_c}\right)^{2r}$$

#### Super-resolution in the presence of noise

Model:

$$\mathbf{s} = f_{\text{low}} \star \hat{\mathbf{x}} + \mathbf{z}, \quad \|\mathbf{z}\|_1 \le \delta$$

Solve:

minimize 
$$\|\mathbf{s} - f_{\text{low}} \star \hat{\mathbf{x}}\|_1$$
 subject to  $\hat{\mathbf{x}} \ge 0$ 

**Theorem:** [V. Morgenshtern and E. Candès, 2015] Assume  $x \ge 0$ , x is *r*-regular. Then,

$$\|\hat{\mathbf{x}} - \mathbf{x}\|_1 \le \delta \left(\frac{N}{2f_c}\right)^{2r}$$

Key novelty: a set of new tools in Fourier analysis



#### Reconstruction of 3D signals from 2D data

Preliminary result: 4 times faster than state-of-the-art



10000 CVX problems solved TFOCS first order solver millions of variables

# Radar imaging

# Radar imaging

Recap:

- Dual certificate is a tool to analyse success of I1.
- Structure of A determines when certificate exists/does not exist.
- When *A<sub>kl</sub>* are i.i.d. Gaussian, dual certificate is random. It exists if there are sufficiently many measurements.
- In the super-resolution problem, the certificate is deterministic low frequency trigonometric polynomial. It exists if the spikes are sufficiently separated.

# Radar imaging

Recap:

- Dual certificate is a tool to analyse success of I1.
- Structure of A determines when certificate exists/does not exist.
- When  $A_{kl}$  are i.i.d. Gaussian, dual certificate is random. It exists if there are sufficiently many measurements.
- In the super-resolution problem, the certificate is deterministic low frequency trigonometric polynomial. It exists if the spikes are sufficiently separated.

We will see: in radar, the certificate is random and it approximates a low frequency trigonometric polynomial.







$$y(t) = \sum_{s=1}^{S} x_s (\mathcal{T}_{\tau_s} \mathcal{F}_{\nu_s} f)(t)$$



$$y(t) = \sum_{s=1}^{S} x_s (\mathcal{T}_{\tau_s} \mathcal{F}_{\nu_s} f)(t)$$
$$= \sum_{s=1}^{S} x_s f(t - \tau_s) e^{i2\pi\nu_s t}$$



$$y(t) = \sum_{s=1}^{S} x_s (\mathcal{T}_{\tau_s} \mathcal{F}_{\nu_s} f)(t)$$
$$= \sum_{s=1}^{S} x_s f(t - \tau_s) e^{i2\pi\nu_s t}$$

**Goal:** recover  $(x_s, \tau_s, \nu_s)$ 

# Time and bandwidth limitations

#### In practice:

- $\blacksquare f(t)$  is bandlimited to  $B\,\mathrm{Hz}$
- $\blacksquare y(t)$  is observed over  $T \sec$
- $\blacksquare \Rightarrow y(t) \text{ is } BT\text{-dimensional}$

# Time and bandwidth limitations

#### In practice:

- f(t) is bandlimited to  $B \operatorname{Hz}$
- $\blacksquare y(t)$  is observed over  $T \sec$
- $\blacksquare \Rightarrow y(t) \text{ is } BT\text{-dimensional}$

**Goal:** estimate  $\tau$  and  $\nu$  with precision higher than 1/B and 1/T

$$y(t) = \sum_{s=1}^{S} x_s f(t - \tau_s) e^{i2\pi\nu_s t}$$

# Time and bandwidth limitations

#### In practice:

- f(t) is bandlimited to  $B \operatorname{Hz}$
- $\blacksquare$  y(t) is observed over  $T \sec$
- $\blacksquare \Rightarrow y(t) \text{ is } BT\text{-dimensional}$

**Goal:** estimate au and u with precision higher than 1/B and 1/T

$$y(t) = \sum_{s=1}^{S} x_s f(t - \tau_s)$$
 (super-resolution)








## Blurring of time and frequency shifts



## Blurring of time and frequency shifts



Resolution achieved by classic Radar via matched filtering is  $(\frac{1}{B}, \frac{1}{T})!$ 

## Main result

#### Notation:

- **y**, **f** contain samples of y(t), f(t) at the rate 1/B
- Columns of A are  $\mathcal{T}_{\tau}\mathcal{F}_{\nu}\mathbf{f}$  (indexed by  $\tau$  and  $\nu$ ):

$$\mathbf{A} = \begin{bmatrix} \mathcal{F}_{\nu} \mathcal{T}_{\tau} \mathbf{x} \\ \mathbf{x} \\ \mathbf{x} \\ \mathbf{x} \\ \mathbf{x} \end{bmatrix} \mathbf{A}^{2} BT$$

- Random probing signal:  $f_{\ell}$  i.i.d.  $\mathcal{N}(0,1)$
- $\blacksquare$   ${\bf x}$  contains  $x_s$  at location indexed by  $\tau$  and  $\nu$

Solve:

minimize 
$$\|\mathbf{x}\|_1$$
 subject to  $\mathbf{y} = \mathbf{A}\mathbf{x}$ 

Solve:

$$\label{eq:minimize} \mathrm{minimize} ~ \| \mathbf{x} \|_1 ~ \text{ subject to } ~ \mathbf{y} = \mathbf{A} \mathbf{x}$$

#### Theorem: [Heckel, Morgenshtern, Soltanolkotabi '15] Assume:

$$|\tau_s - \tau_r| \ge \frac{5}{B}$$
 or  $|\nu_s - \nu_r| \ge \frac{5}{T}$ , for all  $s \ne r$ 

and

$$S \lesssim BT \log^{-3} (BT)$$
.

**Then:** with high probability, 11 minimization recovers x exactly. Hence,  $(\tau_s, \nu_s, x_s)$  are recovered perfectly.

## Key novelty: dual polynomial for radar

Recall: Need:

$$\mathbf{A} = \begin{bmatrix} \mathcal{F}_{\nu} \mathcal{T}_{\tau} \mathbf{x} \\ \mathbf{x} \\ \mathbf{x} \\ \mathbf{x} \\ \mathbf{x} \end{bmatrix} \mathbf{x}^{2} BT$$

$$v(\tau, \nu) = [\mathcal{F}_{\nu} \mathcal{T}_{\tau} \mathbf{x}]^H \hat{\mathbf{v}}$$

## Key novelty: dual polynomial for radar

Recall: Need:

$$\mathbf{A} = \begin{bmatrix} \mathcal{F}_{\nu} \mathcal{T}_{\tau} \mathbf{x} \\ \mathbf{x} \\ \mathbf{x} \\ \mathbf{x} \end{bmatrix} \mathbf{B} T$$

$$v(\tau,\nu) = \left[\mathcal{F}_{\nu}\mathcal{T}_{\tau}\mathbf{x}\right]^{H} \hat{\mathbf{v}}$$

**Ingredient:** dual certificate for super-resolution (with separation) [Candes and Fernandez-Granda '14]

$$v(t) = \sum_{s} c_{s}g(t - t_{s}) +$$
corrections

Low pass and concentrated kernel:  $g(t) = \sum_{k=-f_c}^{f_c} \hat{g}_k e^{i2\pi kt}$ 



#### Key novelty: dual polynomial for radar

Need: 
$$v(\tau, \nu) = [\mathcal{F}_{\nu} \mathcal{T}_{\tau} \mathbf{x}]^{\mathsf{H}} \hat{\mathbf{v}}$$

Ingredient:

$$v(t) = \sum_{s} c_{s}g(t - t_{s}) +$$
corrections

low pass and concentrated kernel:  $g(t) = \sum_{k=-f_c}^{f_c} \hat{g}_k e^{i2\pi kt}$ 



For radar:

$$v(\tau,\nu) = \sum_{s} c_{s} g_{\tau_{s},\nu_{s}}(\tau,\nu) + \text{corrections}$$

$$g_{ au_s,
u_s}( au,
u)$$
 "resembles"  $g(\cdot- au_s) imes g(\cdot-
u_s)$ 

Kernel:

$$g_{\tau_s,\nu_s}(\tau,\nu) = [\mathcal{F}_{\nu}\mathcal{T}_{\tau}\mathbf{x}]^H \hat{\mathbf{v}}$$

Kernel:

$$g_{\tau_s,\nu_s}(\tau,\nu) = [\mathcal{F}_{\nu}\mathcal{T}_{\tau}\mathbf{x}]^H \hat{\mathbf{v}}$$

We can write:

$$(\mathcal{F}_{\nu}\mathcal{T}_{\tau}\mathbf{x})^{\mathsf{H}} = \left[\cdots e^{i2\pi(\tau r + \nu q)}\cdots\right]\mathbf{F}\mathbf{G}^{\mathsf{H}}$$



Kernel:

$$g_{\tau_s,\nu_s}(\tau,\nu) = [\mathcal{F}_{\nu}\mathcal{T}_{\tau}\mathbf{x}]^H \hat{\mathbf{v}}$$

We can write:

$$(\mathcal{F}_{\nu}\mathcal{T}_{\tau}\mathbf{x})^{\mathsf{H}} = \left[\cdots e^{i2\pi(\tau r + \nu q)}\cdots\right]\mathbf{F}\mathbf{G}^{\mathsf{H}}$$



**Choose coefficients:** 

$$\hat{\mathbf{v}} = \mathbf{G}\mathbf{F}^{\mathsf{H}} \left[ \cdots \hat{g}_r \hat{g}_q e^{-i2\pi(\tau r + \nu q)} \cdots \right]^{\mathsf{T}}$$

Kernel:

$$g_{\tau_s,\nu_s}(\tau,\nu) = [\mathcal{F}_{\nu}\mathcal{T}_{\tau}\mathbf{x}]^H \hat{\mathbf{v}}$$

We can write:

$$(\mathcal{F}_{\nu}\mathcal{T}_{\tau}\mathbf{x})^{\mathsf{H}} = \left[\cdots e^{i2\pi(\tau r + \nu q)}\cdots\right]\mathbf{F}\mathbf{G}^{\mathsf{H}}$$

**F** is 2D DFT matrix  $\mathbf{G} = \overbrace{\mathcal{F}_{\overline{BT}}^{r} \mathcal{T}_{\overline{BT}}^{q} \mathbf{x}}_{(BT)^{2}} \clubsuit BT$ 

**Choose coefficients:** 

$$\hat{\mathbf{v}} = \mathbf{GF}^{\mathsf{H}} \left[ \cdots \hat{g}_r \hat{g}_q e^{-i2\pi(\tau r + \nu q)} \cdots \right]^{\mathsf{T}}$$

**Observe:**  $\mathbb{E} \left[ \mathbf{F} \mathbf{G}^{\mathsf{H}} \mathbf{G} \mathbf{F}^{\mathsf{H}} \right] = \mathbf{F} \mathbb{E} \left[ \mathbf{G}^{\mathsf{H}} \mathbf{G} \right] \mathbf{F}^{\mathsf{H}} = \mathbf{I}$ **Therefore:**  $\mathbb{E} \left[ g_{\tau_s,0}(\tau,0) \right] = \sum_{k=-T}^{T} \hat{g}_k e^{i2\pi k(\tau-\tau_j)} = g(\tau-\tau_j)$ 

#### Random kernel approximates deterministic kernel

**Observe:**  $\mathbb{E} \left[ \mathbf{F} \mathbf{G}^{\mathsf{H}} \mathbf{G} \mathbf{F}^{\mathsf{H}} = \mathbf{I} \right]$ **Therefore:**  $\mathbb{E} \left[ g_{\tau_s,0}(\tau, 0) \right] = \sum_{k=-T}^{T} \hat{g}_k e^{i2\pi k(\tau - \tau_j)} = g(\tau - \tau_j)$ 



#### Random kernel approximates deterministic kernel

**Observe:**  $\mathbb{E} \left[ \mathbf{F} \mathbf{G}^{\mathsf{H}} \mathbf{G} \mathbf{F}^{\mathsf{H}} = \mathbf{I} \right]$ **Therefore:**  $\mathbb{E} \left[ g_{\tau_s,0}(\tau, 0) \right] = \sum_{k=-T}^{T} \hat{g}_k e^{i2\pi k(\tau - \tau_j)} = g(\tau - \tau_j)$ 



#### Random kernel approximates deterministic kernel

**Observe:**  $\mathbb{E} \left[ \mathbf{F} \mathbf{G}^{\mathsf{H}} \mathbf{G} \mathbf{F}^{\mathsf{H}} = \mathbf{I} \right]$ **Therefore:**  $\mathbb{E} \left[ g_{\tau_s,0}(\tau, 0) \right] = \sum_{k=-T}^{T} \hat{g}_k e^{i2\pi k(\tau - \tau_j)} = g(\tau - \tau_j)$ 



Now we can use:

 $v(\tau,\nu) = \sum_{s} c_{s} g_{\tau_{s},\nu_{s}}(\tau,\nu) + \text{corrections}$ 

## Mathematics of information



super-resolution microscopy



#### radar imaging

## Mathematics of information



super-resolution microscopy



radar imaging







large wireless networks

communication under channel uncertainty systems with multiple receive antennas  $_{31/33}$ 

#### Related open problems

Phase retrieval from Fourier data: Applications: - imaging of macromolecules  $y_{k} = |\langle f_{k} | x \rangle|^{2}$ 2D DFT (oversampled x2) - astronomy - speech processing Iterative projection algorithms (Fienup, Gerchberg-Saxton) often find approx. solutions ... Uclear why ? , Jx=<fx 1x 1fx> Lifting: yx = <fx 1x><x) fx >\*  $SDP: \begin{cases} find \\ x \\ xt. \\ x \neq 0, rank(x) = 1 \end{cases}$ PSD cone very close, but not (a)ways) exact

# Thank you