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Looking inside the cell: conventional microscopy

microtubule
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Nobel Prize in Chemistry 2014

Eric Betzig Stefan W. Hell W.E. Moerner

Invention of single-molecule microscopy
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Looking inside the cell

conventional microscopy single-molecule microscopy
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Controlled photoactivation

Green fluorescent protein (GFP)

Energy

N
Py

Reaction coordinate

Energy states [Dickson et.al. '97]
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Controlled photoactivation

Energy

A
Reaction coordinate

Green fluorescent protein (GFP) Energy states [Dickson et.al. '97]

m State A is excited to A* and returns to A upon photon emission
m When I is reached from A there is no fluorescence until I

spontaneously moves to A (blinking)
m When I moves to [N there is no fluorescence until NV is activated

by 405nm light and GFP returns to A
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Photoactivated localization microscopy (PALM) Setup
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PALM Process

Step 1

Activation Beam ON

Activated Molecules

Photoactivate Molecules

Step 3. Algorithm needed.

Localize Molecules Photohleach & Record Positions
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Antibodies: attach fluorescent molecules to the structure

All off
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Antibodies: attach fluorescent molecules to the structure

All off All on
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Antibodies: attach fluorescent molecules to the structure

All off All on Detector

Cannot resolve the structure!
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Frame 1
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“Blinking” molecules: sparsity
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“Blinking” molecules: sparsity
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“Blinking” molecules: sparsity

Locate centers of “Gaussian” blobs (parametric estimation)

Combine ~ 10000 frames.

The structure is now resolved!
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Next Frontier: image dynamical processes

Imaging ~ 10000 frames is slow
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Next Frontier: image dynamical processes
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Next Frontier: image dynamical processes

Imaging ~ 10000 frames is slow
Can we make data acquisition faster?

Image ~ 2500 frames with 4 times more molecules per frame?

\&' / Ve . #
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parametric estimation works 4 times more active molecules
= parametric estimation
does not work

% J¥

Need powerful super-resolution algorithm!
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Mathematical model (discrete 1D setup for simplicity)

Object

Detector A= 1/f,

JAWAN

0

2(t) =Y wid(t—t:), zi >0

1

0 1
S(t) = /flow(t - t,)l'(t/)dt,

1 (sin(27r fet) > 2

Frowe(t) = 2f. 7t
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Mathematical model (discrete 1D setup for simplicity)

Object Detector A= 1/f,

Zx, t—t;), ;>0 s(t) = /flow(t — ta(t')dt'

X:[xo'--$N_1]TZO s=Px+z

P = Py, is circulant

Triangular spectrum
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Mathematical model (discrete 1D setup for simplicity)

Object Detector A= 1/f,

Zx, t—t;), ;>0 s(t) = /flow(t — ta(t')dt'

x:[xo---xN_l]TZO s=Px+z

P = Py, is circulant

Flat spectrum

L

—-N/2+1 —fe 0 fe N/2
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Super-resolution factor and stability

Triangular spectrum Flat spectrum
,N/é+1 —}c 0 fL. N‘/2 —N/é+1 7“fc 0 f; N‘/2
s=Px+z

SRF £ N/(2fe)
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Super-resolution factor and stability

Triangular spectrum Flat spectrum
,N/é+1 —‘fc 0 fL N‘/2 —N/é+1 7“fc 0 f; N‘/2
s=Px+z

SRF £ N/(2fe)

?
Stability: |x — x|| < ||z|| - (amplification factor)

16
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Classical resolution criteria: separation is about \.

R

1.22), Ae 0.94\,
Rayleigh criterion Abbe criterion Sparrow criterion
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Rayleigh-regularity: x € R(d,r)

x has fewer than r spikes in every \.d interval [\, = 1/f]

Separation: R(2,1)

=
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Rayleigh-regularity: x € R(d,r)

x has fewer than r spikes in every \.d interval [\, = 1/f]

Separation: R(2,1)

> 2\, I |
0 1
R(4,2)
ﬁ» > 4, I I
0 1
R(6,3)
- N
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Key contribution
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Key contribution

[Prony’1795]

xeCN
no stability

efficient

[Donoho et al.”90]

x>0
no stability

convex

MUSIC, ESPRIT

xeCN

stability not understood

efficient

[Candeés & F.-Granda’12]

x e CN
stability
separation
convex

R(2r,r),x >0

I

[Donoho’92]
xeCN
stability

Rayleigh-regularity
combinatorial

This work
x>0
stability
Rayleigh-regularity
convex
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Main results

Recall: spectrum
s=Px+z ‘ “MMWMM
—N/2+4+1 —fcO fe N/2
Solve:

minimize ||s — PX||; subjectto x>0

Theorem: [V. Morgenshtern and E. Candes, 2014]
Take P = Py or P = Py, Assume x > 0, x € R(2r,r). Then,

I - xlly < c- |l (ﬂ)%
L= Y\er)
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Main results

Recall: spectrum
s=Px+z M\Mﬂm
—N/2+4+1 —fc O fe N/2
Solve:

minimize ||s — Px||; subjectto x>0

Theorem: [V. Morgenshtern and E. Candes, 2014]
Take P = Py or P = Pg,;. Assume x > 0, x € R(2r,7). Then,

N 2r
% — <c- = .
1% = x[ly < ¢ lz]}x <2fc)

Converse: [V. Morgenshtern and E. Candes, 2014]

2r—1
For P = Py, no algorithm can do better than ¢ - ||z - (%) ;



Key ideas

— Duality theory: to prove stability we need a low-frequency
trigonometric polynomial that is “curvy”

[Dohono, et al.’92] construct trigonometric polynomial that is
not “curvy”

[Candés and Fernandez-Granda’12] construct trigonometric
polynomial that is “curvy”, but construction needs separation
- New construction: multiply “curvy” trigonometric polynomials

= ‘curvy”
= construction needs no separation
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m 7 is the support of x
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Dual certificate (noiseless case, z = 0)

m 7 is the support of x

m Suppose, we can construct a low-frequency trig. polynomial:
fe

qt) = Y e ™, 0<q(t) <1, q(t)=0forallt; €T

. A\

11 to i3




Dual certificate (noiseless case, z = 0)

m 7 is the support of x

m Suppose, we can construct a low-frequency trig. polynomial:
fe

qt) = Y e ™, 0<q(t) <1, q(t)=0forallt; €T

. A\

11 to i3

m Then, x = x.



23/50



23/50



raw(P)

m X = x iff there exists
q L null(P) and q € 9||x])1
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Connection to LASSO (x can be negative here)

minimize ||x||; subject to s=Px

m X = x iff there exists
q L null(P) and q € 9||x|1

m P is orthogonal projection onto the
set of low-freq. trig. polynomials:
q Ll null(P) &

alt) = XAy, dee

raw(P)

descent cone
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Connection to LASSO (x can be negative here)

minimize ||x||; subject to s=Px

m X = x iff there exists
q L null(P) and q € 9||x|1

m P is orthogonal projection onto the
set of low-freq. trig. polynomials:
q Ll null(P) &

alt) = XAy, dee

B qedlx|]i e
q(t;) = sign(z;) x; #0
]q(ti)\ S 1 xT; = 0

descent cone

+1

sign(z) (xz #0)
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Dual certificate (noisy case)

m 7 is the support of x

m Suppose, we can construct a low-frequency trig. polynomial:
fe

qt) = D e ™, 0<q(t) <1, q(t)=0forallt; €T

k:_fc
1 \

11 to l3
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Dual certificate (noisy case)

m 7 is the support of x

m Suppose, we can construct a low-frequency trig. polynomial:
fe

qt) = D e ™, 0<q(t) <1, q(t)=0forallt; €T

N A\
o\ /\ TN/

t—% bty t—x tety t—x st

m Then, ||x —x||1 < 4]z]1/p.
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a0 = [ % lcos(2m(t +1/2 — to)) + 1].
to€T

(07 1) o
p

~1/2 1/N 1/2

26 /50



Key ideas

- Duality theory: to prove stability we need a low-frequency
trigonometric polynomial that is “curvy”
- [Dohono, et al.’92] construct trigonometric polynomial that is
not “curvy”
— [Candeés and Fernandez-Granda’12] construct trigonometric
polynomial that is “curvy”, but construction needs separation
- New construction: multiply “curvy” trigonometric polynomials

= ‘curvy”
= construction needs no separation

27 /50



[Candes, Fernandez-Granda'12]: “Curvy” ¢(t)

Z a; K (t — tj) + corrections,
t;€T

K(t)...low-frequency and “curvy”

Separation between zeros required: 7 € R(2,1)

High curvature!

. N\?
alt =) ~ F2(t )% = x =1 < c- 2]l - (—)
o7,

r i =

t > 2\ to t3
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Comparison of Trigonometric Polynomials

(0,1) “curvy” q(t) = f2t2
e
SN

Classical” q(t) ~ t*

—1/2 1/2
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Key ideas

Duality theory: to prove stability we need a low-frequency
trigonometric polynomial that is “curvy”

[Dohono, et al.’92] construct trigonometric polynomial that is
not “curvy”

[Candés and Fernandez-Granda’12] construct trigonometric
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New construction: curvature without separation

Partition support: 7 =7, U732, r=2
Regularity: 7 € R(2-2,2) = T, € R(4,1)

q(t; fo) = a1(t; fe/2) % qa(t; fe/2)
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New construction: curvature without separation

Partition support: 7 =7, U732, r=2
Regularity: 7 € R(2-2,2) = T, € R(4,1)

q(t; fo) = a1(t; fe/2) % qa(t; fe/2)

High curvature!

2r N 2r
alt -t ~ Lo 1) :»\|x—f<||1Sc-uzul-(2—ﬁ)
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Summation vs. multiplication

Remember: ¢(t) must be frequency-limited to f.!
[Donoho, et.al.]:
1
a(t) = [ 5 leos(@n(t+1/2 1)) +1]

frequency one
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Summation vs. multiplication

Remember: ¢(t) must be frequency-limited to f.!
[Donoho, et.al.]:
1
a(t) = [ 5 leos(@n(t+1/2 1)) +1]

frequency one

[Candés, Fernandez-Granda]:

q(t) =Y a;K(t—t;)

tET frequency f.

This work:

qt)y =] > apmK(t—t)

k=11;1€Tk frequency fc/r
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Complex vs. positive signals

Why do we need x > 07

x>0 xeCN
Interpolate zero on supp. of x Interpolate sign(x) on supp. of x
qlts) =1
1 1 ;
[
o2t Y Y WY A G oG,
>2), 1/N >2), 1/N

Does not exist! (Bernstein Th.)
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z(t) x(t) and &(t)

Is the problem hopeless?
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fe fixed, N = 0o = SRFqp — o0
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fe fixed, N = 0o = SRFqp — o0

x(t) z(t) and &(t)

+ | |

Is the problem hopeless?

No: we need to be less ambitions!

5(t) = (fiow *)(t) &(t) = (fnixx)(t)
Ac Ani
I\ A i N\

Error=|| fui x(z — &)|1

A\ A\
v 7

SRENEW = A¢/Ani
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Need new tools

Theorem: [V. Morgenshtern and E. Candes, 2014]
Assume z(t) > 0, z(t) € R(2r,r). Then,

)\c 2r
lfarto =2 < e (32) 1=l

1

Can do: all zeros Need: arbitrary pattern {0, +p}
1 1
q(ti) =0
p
p :
o+ W 8 SRS BTV YA
— 22\ - = ' ' -
~ A ~ Ani -
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2D Super-resolution

Theorem: [V. Morgenshtern and E. Candes, 2014]

Take P = Py 9p of P = Py, op. Assume x > 0, x € R(2.38r,r).

Then, )
N\
x—x|h <c- | — 0.
Ji-xh < (5 )

New: number of spikes is linear in the number of observations

37
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Improving microscopes

Collaboration with Moerner Lab, C.A. Sing-Long, E. Candes



Reconstruction of 3D signals from 2D data

Double-helix PSF
“‘;‘ - °
HoReaud

picture from [Pavani and Piston'08]

Normal PSF

2D double-helix data
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Reconstruction of 3D signals from 2D data

Double-helix PSF

Normal PSF

picture from [Pavani and Piston'08]

2D double-helix data

1
minimize 5”5 — Px||3 + \o|| diag(w)x||;

subjectto x>0
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Preliminary result: 4 times faster than state-of-the-art

10000 CVX problems solved
TFOCS first order solver
millions of variables



Flexible framework: smooth background separation

minimize s —P(X+b)|3 + Ao|X]1
subject to x>0
b low freq. trig. polynomial (background)
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Comparison of super-resolution algorithms

Work in progress:

m Need to carefully compare super-resolution algorithms in practice

= Naive matched-filters
= Algebraic methods: MUSIC, ESPRIT, ...
= Convex-optimization algorithms with different regularizers
m Realistic physical model
= Noise: quantum noise and out-of-focus background
= Point-spread function (P) uncertainty and variation
= Rotation of single molecules
...
m Test images (phantoms):
= Different densities of sources
= Different spacial distributions
= Correct answer should always be known

m Create a database of test cases for quick algorithm assessment
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Conclusion

Convex optimization is a near-optimal method
for super-resolution of positive sources

m Flexibility and good practical performance
m Non-asymptotic precise stability bounds

m Rayleigh-regularity is fundamental: separation between spikes is
only one part of the picture
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Lots of questions remain

m What is the best regularizer in the presence of stochastic noise?
m Fast parallel solver exploiting the structure of the problem

m Theory for Double-Helix reconstruction: 3D signal from 2D
observations

m Tractable near-optimal algorithm for complex-valued signals?
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Lots of questions remain

m What is the best regularizer in the presence of stochastic noise?
m Fast parallel solver exploiting the structure of the problem

m Theory for Double-Helix reconstruction: 3D signal from 2D
observations

m Tractable near-optimal algorithm for complex-valued signals?

m Sparse regression where the design matrix has highly
correlated columns:

A =Jay,...,ay]

Shift-invariance: (ag,a;) = (ak4r, a41r)

(ag, ag4r) is large for small r

(ag, agy,) decays quickly with r

Minimum separation likely needed in general

If all elements in A are nonnegative and the signal is

nonnegative, regularity might be enough
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mSett h=x—-x, T ={l/N:h<0}
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mSet: h=x—-x, 7 ={l/N:h <0}Csupp(x).
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Proof of Lemma

mSett h=%x—-x, T ={l/N:h <0}Csupp(x).
m Dual vector ¢ = q(I/N) satisfies:
q=0, I[/NeT

Pﬂatq - q7 Hquo - 17 and .
q > p, otherwise.
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m On the other hand:

N-1
[{a—p/2,h)] =

> (@ —p/2)h

=0

N-1

= (@ —p/2)h = plh]1/2.
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Proof of Lemma

mSetth=%—-x, 7 =/{I/N:h<0}C supp(x).
m Dual vector ¢ = q(I/N) satisfies:
q=0, I/NeT
Pﬂatq =q, Hquo = 17 and { / .
q > p, otherwise.
m On the one hand:
[(a—p/2,h)| = [(P(a—p/2),h)| = [(a — p/2,Ph)]
< lla— p/2ll[Ph]l; < [Px — s+ — Px];
< [[Px —sll1 + [ls — Px|[y
< 2|[Px — sy < 2|z

m On the other hand:

N—-1 N—-1
{a—p/2,0)| = | (a—p/2h| = (@ — p/2)hi > plh]1/2.
=0 =0

m Combining: ||hlj; < 4||z]1/p.

48 /50



49 /50



49 /50



Connection to Bernstein theorem

Consider: ¢(t) = Zf;_fc gre™ 2™ with [|glloo <1
Then: ||¢||co < 2f.

“Curvy” q(t) has best possible curvature!

Since
q(t;) =0
q(t;) =0
lglls <1

We conclude:
1dlloo < 2fe = 1"l < (2fe)?
= q(t —t;) < (2f)%(t — ;)2

(2fe)* _ 1
N2 SRF?

=q(t;i+1/N) <
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New tools

Control behavior on separated set
Multiply

q(t) = qi(t) x ga(t)
0= (t3) = di(t3)q2(t3) + q1(t3)dh(t3)

o) ()
> ¢ (1) =0
N\ [
’ t t } t L t ts t 3
0 \}1 \:2 — \4 > 0 \El \Ez — \4/
-«— > 2 -— > 2\
~ )\m ~ /\hi
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New tools

Control behavior on separated set
Multiply

q(t) = q1(t) x q2(2)
0= (t3) = di(t3)q2(t3) + q1(t3)dh(t3)

o) ()
e q't:)=0
N\ [
g t ts } t P t 2 t t
0 \}1 \:2 — \4 > 0 \El \Ez — \4/
-— >2X -— > 2\
~ Ani ~ Ani
Sum

a®) = > "T[ D auK(t—tp)

r =1t;
k iK€k frequency fc/r
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