Mathematical methods for machine learning and signal processing SS 19

Problem set 3

Veniamin Morgenshtern, Helmut Bölcskei, Erwin Riegler

Due date: 6. June 2019

Problem 1: Gram matrix

Let $\{\mathbf{a}\}_{k=1}^{N}$ be a set of vectors in \mathbb{C}^{M} . Show that the Gram matrix $\{\langle \mathbf{a}_{k}, \mathbf{a}_{l} \rangle\}_{k,l=1}^{N}$ is a Hermitian positive-semidefinite matrix, and that it is positive-definite whenever $\{\mathbf{a}\}_{k=1}^{N}$ forms a linearly independent set of vectors.

Problem 2: "l₀-norm"

In the lecture, we defined $\|\mathbf{x}\|_0$ to be the number of entries in the vector $\mathbf{x} \in \mathbb{C}^N$. Show that $\|\cdot\|_0$ is not a norm for \mathbb{C}^N , despite the fact that it is often referred to as " l_0 -norm".

Problem 3: Fat matrix inversion

Consider a matrix $\mathbf{A} \in \mathbb{R}^{S \times N}$ with S < N. Consider a vector $\mathbf{y} \in \mathbb{R}^S$.

- 1. How many solutions does the equation Ax = y have?
- 2. Consider a subset $S \subset \{1, ..., N\}$ with S elements. Now we are looking for the solutions of the equation $A\mathbf{x} = \mathbf{y}$ that satisfy the additional constraint: $x_j = 0$ for $j \notin S$. What are the conditions on the matrix \mathbf{A} so that the equation $A\mathbf{x} = \mathbf{y}$ has exactly one solution x satisfying this additional constraint?

Problem 4: Compressed sensing

Let $\mathbf{x} \in \mathbb{R}^N$ be a piecewise constant vector with only a small number s of jumps. That is,

$$\mathbf{x} = [\underbrace{\alpha_1 \alpha_1 \dots \alpha_1}_{\text{block1}} \underbrace{\alpha_2 \alpha_2 \dots \alpha_2}_{\text{block2}} \dots \underbrace{\alpha_s \alpha_s \dots \alpha_s}_{\text{blocks}}]^\mathsf{T}.$$

Suppose that \mathbf{x} is unknown to us and that we only know the measurement vector

$$\mathbf{y} = \mathbf{A}\mathbf{x} \in \mathbb{R}^M,\tag{1}$$

where $\mathbf{A} \in \mathbb{R}^{M \times N}$ is a known matrix modeling a linear measurement process. In the case where $M \leq N$, (1) form an underdetermined system of equations. However, compressed sensing theory tells us that it is all the same possible to recover \mathbf{x} under certain conditions.

Explain how you can recover the vector \mathbf{x} from the knowledge of \mathbf{y} and \mathbf{A} only.

Problem 5: P0 Recovery algorithm

This is a computer exercise. The point of the exercise is understand the most basic recovery algorithm P0.

Consider the space \mathbb{C}^M . Let \mathbf{e}_k denote the k-th column of the $M \times M$ identity matrix $\mathbf{I}_{M \times M}$. Let \mathbf{f}_k denote the k-th column of the $M \times M$ Fourier matrix

$$\mathbf{F} = \frac{1}{\sqrt{M}} \begin{bmatrix} 1 & 1 & \cdots & 1\\ 1 & \omega & \cdots & \omega^{M-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \omega^{M-1} & \cdots & \omega^{(M-1)(M-1)} \end{bmatrix}$$

where $\omega = \exp(-2\pi i/M)$.

Compose a frame for \mathbb{C}^M by combining the ONBs $\mathcal{E}_{\mathbf{I}}$ and $\mathcal{E}_{\mathbf{F}}$:

$$\mathbf{D} = [\mathbf{d}_1, \dots, \mathbf{d}_{2M}] = [\mathbf{e}_1, \dots, \mathbf{e}_M, \mathbf{f}_1, \dots, \mathbf{f}_M].$$

1. Fix $s, 1 \leq s \leq 2M$. Choose a subset of indices $S \subset \{1, \ldots, 2M\}$ of cardinality |S| = s at random. Choose a set of coefficients $\{x_k\}_{k \in S}$ at random. Generate the signal **y** according to

$$\mathbf{y} = \sum_{k \in \mathcal{S}} x_k \mathbf{d}_k$$

Your goal now is to implement and test algorithms that take \mathbf{y} as an input and try to recover S and $\{x_k\}_{k\in S}$ as an output.

2. Implement the P0-recovery algorithm discussed in class. Recall that this algorithm searches through all possible subsets $S \subset \{1, \ldots, 2M\}$ of cardinality s, starting from the smallest s = 1 and increasing s step-by-step. For each S the algorithm searches for a solution $\{x_k\}_{k \in S}$ of the equation

$$\mathbf{y} = \sum_{k \in \mathcal{S}} x_k \mathbf{d}_k$$

If the solution exists, the algorithm stops and gives S and $\{x_k\}_{k\in S}$ as an output.

3. Experiment with different values of M and s. Do you observe perfect recovery? How does the speed of the algorithm depend on M and on s?

Problem 6: Coherence in sines and spikes

Consider the space \mathbb{C}^M . Let \mathbf{e}_k denote the k-th column of the $M \times M$ identity matrix $\mathbf{I}_{M \times M}$. Let \mathbf{f}_k denote the k-th column of the $M \times M$ DFT matrix

$$\mathbf{F} = \frac{1}{\sqrt{M}} \begin{bmatrix} 1 & 1 & \cdots & 1\\ 1 & \omega & \cdots & \omega^{M-1}\\ \vdots & \vdots & \ddots & \vdots\\ 1 & \omega^{M-1} & \cdots & \omega^{(M-1)(M-1)} \end{bmatrix}$$

where $\omega = \exp(-2\pi i/M)$.

Compose a frame for \mathbb{C}^M by combining the ONBs $\mathcal{E}_{\mathbf{I}}$ and $\mathcal{E}_{\mathbf{F}}$:

$$\mathbf{D} = [\mathbf{d}_1, \dots, \mathbf{d}_{2M}] = [\mathbf{e}_1, \dots, \mathbf{e}_M, \mathbf{f}_1, \dots, \mathbf{f}_M].$$

- 1. Compute the coherence $\mu(\mathbf{D})$.
- 2. What is the largest sparsity s such that successful recovery via P0 or Basic Pursuit is guaranteed for every vector \mathbf{x} with $\|\mathbf{x}\|_0 \leq s$ from the measurements $\mathbf{y} = \mathbf{D}\mathbf{x}$?

Problem 7: Coherence in super-resolution

Let \mathbf{F}_{lo} denote low frequency part of the DFT matrix, i.e. the $M \times N$ matrix consisting of the $M = 2f_c + 1$ rows

$$[1 \ \omega^k \ \cdots \ \omega^{k(N-1)}]$$

where $\omega = \exp(-2\pi i/N)$ for $k = -f_c, \ldots, f_c$.

- 1. Compute the coherence $\mu(\mathbf{F}_{lo})$.
- 2. What is the largest sparsity s such that successful recovery via P0 or Basic Pursuit is guaranteed for every vector \mathbf{x} with $\|\mathbf{x}\|_0 \leq s$ from the measurements $\mathbf{y} = \mathbf{F}_{lo} \mathbf{x}$?

Problem 8: Super-resolution experiment

This is a computer exercise. Python is the preferred language. Let N = 128 be the length of the discrete signal **x**, and $f_c = 16$ be the cut-off frequency.

- 1. Generate the $N \times N$ DFT matrix **F**. Generate a sparse signal **x**, start with sparsity level s = 2, start with nonnegative signal.
- 2. Compute and plot $\mathbf{F}\mathbf{x}$. Compute and plot $\mathbf{F}^{\mathsf{H}}\mathbf{F}\mathbf{x}$. Is it true that $\mathbf{F}^{\mathsf{H}}\mathbf{F}\mathbf{x} = \mathbf{x}$?
- 3. Generate \mathbf{F}_{lo} , the matrix of size $2f_c \times N$, corresponding to the low frequencies in \mathbf{F} .
- 4. Compute $\mathbf{y} = \mathbf{F}_{lo}^{\mathsf{H}} \mathbf{F}_{lo} \mathbf{x}$. Does the result look like a low-pass version of \mathbf{x} ?
- 5. Install cvxpy version higher than 1.0.0. Implement the basis pursuit $(l_1 \text{ minimization})$ recovery algorithm in cvxpy.
- 6. Does cvxpy recover the signal **x** perfectly from **y**?
- 7. Experiment with higher s. Report your findings.
- 8. Experiment with signal that has positive and negative elements. Report your findings.