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Problem 1: Gram matrix

Let {a}Nk=1 be a set of vectors in CM . Show that the Gram matrix {〈ak,al〉}Nk,l=1 is a Hermi-

tian positive-semidefinite matrix, and that it is positive-definite whenever {a}Nk=1 forms a linearly
independent set of vectors.

Problem 2: “l0-norm”

In the lecture, we defined ‖x‖0 to be the number of entries in the vector x ∈ CN . Show that ‖·‖0
is not a norm for CN , despite the fact that it is often referred to as “l0-norm”.

Problem 3: Fat matrix inversion

Consider a matrix A ∈ RS×N with S < N . Consider a vector y ∈ RS .

1. How many solutions does the equation Ax = y have?

2. Consider a subset S ⊂ {1, . . . , N} with S elements. Now we are looking for the solutions of
the equation Ax = y that satisfy the additional constraint: xj = 0 for j /∈ S. What are the
conditions on the matrix A so that the equation Ax = y has exactly one solution x satisfying
this additional constraint?

Problem 4: Compressed sensing

Let x ∈ RN be a piecewise constant vector with only a small number s of jumps. That is,

x = [α1α1 . . . α1︸ ︷︷ ︸
block1

α2α2 . . . α2︸ ︷︷ ︸
block2

. . . αsαs . . . αs︸ ︷︷ ︸
blocks

]T.

Suppose that x is unknown to us and that we only know the measurement vector

y = Ax ∈ RM , (1)

where A ∈ RM×N is a known matrix modeling a linear measurement process. In the case where
M ≤ N , (1) form an underdetermined system of equations. However, compressed sensing theory
tells us that it is all the same possible to recover x under certain conditions.

Explain how you can recover the vector x from the knowledge of y and A only.

Problem 5: P0 Recovery algorithm
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This is a computer exercise. The point of the exercise is understand the most basic recovery
algorithm P0.

Consider the space CM . Let ek denote the k-th column of the M ×M identity matrix IM×M .
Let fk denote the k-th column of the M ×M Fourier matrix

F =
1√
M


1 1 · · · 1
1 ω · · · ωM−1

...
...

. . .
...

1 ωM−1 · · · ω(M−1)(M−1)


where ω = exp(−2πi/M).

Compose a frame for CM by combining the ONBs EI and EF:

D = [d1, . . . ,d2M ] = [e1, . . . , eM , f1, . . . , fM ].

1. Fix s, 1 ≤ s ≤ 2M . Choose a subset of indices S ⊂ {1, . . . , 2M} of cardinality
∣∣S∣∣ = s at

random. Choose a set of coefficients {xk}k∈S at random. Generate the signal y according to

y =
∑
k∈S

xkdk.

Your goal now is to implement and test algorithms that take y as an input and try to recover
S and {xk}k∈S as an output.

2. Implement the P0-recovery algorithm discussed in class. Recall that this algorithm searches
through all possible subsets S ⊂ {1, . . . , 2M} of cardinality s, starting from the smallest s = 1
and increasing s step-by-step. For each S the algorithm searches for a solution {xk}k∈S of
the equation

y =
∑
k∈S

xkdk.

If the solution exists, the algorithm stops and gives S and {xk}k∈S as an output.

3. Experiment with different values of M and s. Do you observe perfect recovery? How does
the speed of the algorithm depend on M and on s?

Problem 6: Coherence in sines and spikes

Consider the space CM . Let ek denote the k-th column of the M ×M identity matrix IM×M .
Let fk denote the k-th column of the M ×M DFT matrix

F =
1√
M


1 1 · · · 1
1 ω · · · ωM−1

...
...

. . .
...

1 ωM−1 · · · ω(M−1)(M−1)


where ω = exp(−2πi/M).

Compose a frame for CM by combining the ONBs EI and EF:

D = [d1, . . . ,d2M ] = [e1, . . . , eM , f1, . . . , fM ].
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1. Compute the coherence µ(D).

2. What is the largest sparsity s such that successful recovery via P0 or Basic Pursuit is guar-
anteed for every vector x with ‖x‖0 ≤ s from the measurements y = Dx?

Problem 7: Coherence in super-resolution

Let Flo denote low frequency part of the DFT matrix, i.e. the M × N matrix consisting of the
M = 2fc + 1 rows

[1 ωk · · · ωk(N−1)]

where ω = exp(−2πi/N) for k = −fc, . . . , fc.

1. Compute the coherence µ(Flo).

2. What is the largest sparsity s such that successful recovery via P0 or Basic Pursuit is guar-
anteed for every vector x with ‖x‖0 ≤ s from the measurements y = Flox?

Problem 8: Super-resolution experiment

This is a computer exercise. Python is the preferred language. Let N = 128 be the length of the
discrete signal x, and fc = 16 be the cut-off frequency.

1. Generate the N × N DFT matrix F. Generate a sparse signal x, start with sparsity level
s = 2, start with nonnegative signal.

2. Compute and plot Fx. Compute and plot FHFx. Is it true that FHFx = x?

3. Generate Flo, the matrix of size 2fc ×N , corresponding to the low frequencies in F.

4. Compute y = FH
loFlox. Does the result look like a low-pass version of x?

5. Install cvxpy version higher than 1.0.0. Implement the basis pursuit (l1 minimization) recov-
ery algorithm in cvxpy.

6. Does cvxpy recover the signal x perfectly from y?

7. Experiment with higher s. Report your findings.

8. Experiment with signal that has positive and negative elements. Report your findings.
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