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Agenda:

1. The Netflix problem

2. Which matrices can we recover?

3. Recovery algorithm

4. Coherence

5. Recovery via nuclear norm minimization

6. Proof strategy

In this lecture we will not prove all the results. For detailed treatment please see [1–5]

1 The Netflix problem

Netflix database consists of about m ≈ 106 users and about n ≈ 25000 movies. Users rate movies;
the ratings are recorded into matrix A ∈ Rm×n. Of course most of the users have only seen a small
fractions of the movies, and therefore only a small subset of entries of A have been observed:

The goal is to predict which movies a particular user might like. Mathematically this means that
we would like to complete matrix A based on the partial observations of some of its entries.
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Clearly, without additional assumptions we cannot recover the entries of A we have not seen. In
the Netflix problem we can assume that matrix A is low-rank: r = rank(A)� n.

This modeling assumption can be justified as follows. It is reasonable to assume that there is a
small number, r, of hidden factors, which are common to all users, so that the preference of each
user is largely determined by his/her (linear) response to these factors. The hidden factors might
be the genre of the movie or if Leonardo DiCaprio is playing in the movie. The assumption directly
leads to the (thin) SVD decomposition of A, in which the inner dimension, r, is much smaller than
the outer dimensions m,n:

users
<latexit sha1_base64="pVY3JU8yWKQ1Mw+jMu57wm62kMM=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsxURZcFNy4r2Ad0hpJJ0zY0kxmSO2IZ+htuXCji1p9x59+YtrPQ1gOBwznnJjcnTKQw6LrfTmFtfWNzq7hd2tnd2z8oHx61TJxqxpsslrHuhNRwKRRvokDJO4nmNAolb4fj25nffuTaiFg94CThQUSHSgwEo2gl30f+hFlqbGLaK1fcqjsHWSVeTiqQo9Erf/n9mKURV8gkNabruQkGGdUomOTTkm/vTSgb0yHvWqpoxE2QzXeekjOr9Mkg1vYoJHP190RGI2MmUWiTEcWRWfZm4n9eN8XBTZAJlaTIFVs8NEglwZjMCiB9oTlDObGEMi3sroSNqKYMbQklW4K3/OVV0qpVvYtq7f6yUr/K6yjCCZzCOXhwDXW4gwY0gUECz/AKb07qvDjvzsciWnDymWP4A+fzB+adkjQ=</latexit>

factors
<latexit sha1_base64="jDGuPsSJfP+uOl3kb0d8hShtnvA=">AAAB9XicbVDLTgJBEJzFF+IL9ehlIjHxRHZRo0cSLx4xkUcCSGaHXpgwO7uZ6VXJhv/w4kFjvPov3vwbB9iDgpV0UqnqTneXH0th0HW/ndzK6tr6Rn6zsLW9s7tX3D9omCjRHOo8kpFu+cyAFArqKFBCK9bAQl9C0x9dT/3mA2gjInWH4xi6IRsoEQjO0Er3HYQnTAPGMdJm0iuW3LI7A10mXkZKJEOtV/zq9COehKCQS2ZM23Nj7KZMo+ASJoVOYiBmfMQG0LZUsRBMN51dPaEnVunTINK2FNKZ+nsiZaEx49C3nSHDoVn0puJ/XjvB4KqbChUnCIrPFwWJpBjRaQS0LzRwlGNLGNfC3kr5kGkbgg2qYEPwFl9eJo1K2TsrV27PS9WLLI48OSLH5JR45JJUyQ2pkTrhRJNn8krenEfnxXl3PuatOSebOSR/4Hz+AF3Bkwg=</latexit>

movies
<latexit sha1_base64="TBA7f1lhwdsVgkzBM01TW3qPltc=">AAAB9HicbVDLTgJBEJzFF+IL9ehlIjHxRHZRo0cSLx4xkUcCGzI7NDBhdmed6SWSDd/hxYPGePVjvPk3DrAHBSvppFLVne6uIJbCoOt+O7m19Y3Nrfx2YWd3b/+geHjUMCrRHOpcSaVbATMgRQR1FCihFWtgYSChGYxuZ35zDNoIFT3gJAY/ZINI9AVnaCW/g/CEaajGAsy0Wyy5ZXcOukq8jJRIhlq3+NXpKZ6EECGXzJi258bop0yj4BKmhU5iIGZ8xAbQtjRiIRg/nR89pWdW6dG+0rYipHP190TKQmMmYWA7Q4ZDs+zNxP+8doL9Gz8VUZwgRHyxqJ9IiorOEqA9oYGjnFjCuBb2VsqHTDOONqeCDcFbfnmVNCpl76Jcub8sVa+yOPLkhJySc+KRa1Ild6RG6oSTR/JMXsmbM3ZenHfnY9Gac7KZY/IHzucPo7SSnw==</latexit>

A
<latexit sha1_base64="Zvs6Y72bzCZncu9kfK0BQ9tF+es=">AAAB8XicbVDLSgMxFL3js9ZX1aWbYBFclZmq6LLixmUF+8C2lEx6pw3NZIYkI5Shf+HGhSJu/Rt3/o2ZdhbaeiBwOOdecu7xY8G1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZQohg0WiUi1fapRcIkNw43AdqyQhr7Alj++zfzWEyrNI/lgJjH2QjqUPOCMGis9dkNqRn6Q3kz7pbJbcWcgy8TLSRly1Pulr+4gYkmI0jBBte54bmx6KVWGM4HTYjfRGFM2pkPsWCppiLqXzhJPyalVBiSIlH3SkJn6eyOlodaT0LeTWUK96GXif14nMcF1L+UyTgxKNv8oSAQxEcnOJwOukBkxsYQyxW1WwkZUUWZsSUVbgrd48jJpViveeaV6f1GuXeZ1FOAYTuAMPLiCGtxBHRrAQMIzvMKbo50X5935mI+uOPnOEfyB8/kDpwuQ3A==</latexit>

U
<latexit sha1_base64="ZHte5zAmlyghRxtbfOMY1u51voE=">AAAB8XicbVBNSwMxFHxbv2r9qnr0EiyCp7JbFT0WvHis4LbFdinZNNuGZpMlyQpl6b/w4kERr/4bb/4bs+0etHUgMMy8R+ZNmHCmjet+O6W19Y3NrfJ2ZWd3b/+genjU1jJVhPpEcqm6IdaUM0F9wwyn3URRHIecdsLJbe53nqjSTIoHM01oEOORYBEj2FjpsR9jMw6jzJ8NqjW37s6BVolXkBoUaA2qX/2hJGlMhSEca93z3MQEGVaGEU5nlX6qaYLJBI9oz1KBY6qDbJ54hs6sMkSRVPYJg+bq740Mx1pP49BO5gn1speL/3m91EQ3QcZEkhoqyOKjKOXISJSfj4ZMUWL41BJMFLNZERljhYmxJVVsCd7yyauk3ah7F/XG/WWteVXUUYYTOIVz8OAamnAHLfCBgIBneIU3RzsvzrvzsRgtOcXOMfyB8/kDxW+Q8A==</latexit>

⌃
<latexit sha1_base64="eK/n/GwWtKcudxIp/IJCshNX5UA=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEVyWpii4LblxWtA9oQplMJ+3QmSTMTIQa+iVuXCji1k9x5984abPQ1gMDh3Pu5Z45QcKZ0o7zbZXW1jc2t8rblZ3dvf2qfXDYUXEqCW2TmMeyF2BFOYtoWzPNaS+RFIuA024wucn97iOVisXRg54m1Bd4FLGQEayNNLCrnsB6HISZd89GAs8Gds2pO3OgVeIWpAYFWgP7yxvGJBU00oRjpfquk2g/w1Izwums4qWKJphM8Ij2DY2woMrP5sFn6NQoQxTG0rxIo7n6eyPDQqmpCMxkHlMte7n4n9dPdXjtZyxKUk0jsjgUphzpGOUtoCGTlGg+NQQTyUxWRMZYYqJNVxVTgrv85VXSadTd83rj7qLWvCzqKMMxnMAZuHAFTbiFFrSBQArP8Apv1pP1Yr1bH4vRklXsHMEfWJ8/CiSTSw==</latexit>

VT
<latexit sha1_base64="jJahoZa5wdj4tkIZWLi+/jKJyfw=">AAAB83icbVBNSwMxFHypX7V+VT16CRbBU9mtih4LXjxWaGuhu5Zsmm1Ds9klyQpl6d/w4kERr/4Zb/4bs+0etHUgMMy8x5tMkAiujeN8o9La+sbmVnm7srO7t39QPTzq6jhVlHVoLGLVC4hmgkvWMdwI1ksUI1Eg2EMwuc39hyemNI9l20wT5kdkJHnIKTFW8ryImHEQZt3ZY3tQrTl1Zw68StyC1KBAa1D98oYxTSMmDRVE677rJMbPiDKcCjareKlmCaETMmJ9SyWJmPazeeYZPrPKEIexsk8aPFd/b2Qk0noaBXYyz6iXvVz8z+unJrzxMy6T1DBJF4fCVGAT47wAPOSKUSOmlhCquM2K6ZgoQo2tqWJLcJe/vEq6jbp7UW/cX9aaV0UdZTiBUzgHF66hCXfQgg5QSOAZXuENpegFvaOPxWgJFTvH8Afo8wcnXpG3</latexit>

=<latexit sha1_base64="MiFJLL/FO/XGTrx2DTcoaowWrok=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGRS9CwIvHBMwDkiXMTnqTMbOzy8ysEEK+wIsHRbz6Sd78GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDfzW0+oNI/lgxkn6Ed0IHnIGTVWqt/2iiW37M5BVomXkRJkqPWKX91+zNIIpWGCat3x3MT4E6oMZwKnhW6qMaFsRAfYsVTSCLU/mR86JWdW6ZMwVrakIXP198SERlqPo8B2RtQM9bI3E//zOqkJb/wJl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkmal7F2UK/XLUvUqiyMPJ3AK5+DBNVThHmrQAAYIz/AKb86j8+K8Ox+L1pyTzRzDHzifP4oyjLg=</latexit>

users, m
<latexit sha1_base64="Y3tdCNcygvEDpfN9uOgKttlk3Qk=">AAAB+XicbVDLSgMxFM3UV62vUZdugkVwIWWmKrosuHFZwT6gHUomzbShSWZI7hTL0D9x40IRt/6JO//GtJ2Fth4IHM45N7k5YSK4Ac/7dgpr6xubW8Xt0s7u3v6Be3jUNHGqKWvQWMS6HRLDBFesARwEayeaERkK1gpHdzO/NWba8Fg9wiRhgSQDxSNOCVip57pdYE+QpcZmLvAUy55b9ireHHiV+Dkpoxz1nvvV7cc0lUwBFcSYju8lEGREA6eCTUtde3dC6IgMWMdSRSQzQTbffIrPrNLHUaztUYDn6u+JjEhjJjK0SUlgaJa9mfif10khug0yrpIUmKKLh6JUYIjxrAbc55pREBNLCNXc7orpkGhCwRZRsiX4y19eJc1qxb+sVB+uyrXrvI4iOkGn6Bz56AbV0D2qowaiaIye0St6czLnxXl3PhbRgpPPHKM/cD5/AFDYk2Y=</latexit>

movies, n
<latexit sha1_base64="0PpnEgdbtL2sk4UouJV4qV106s0=">AAAB+nicbVDLSgNBEJz1GeMr0aOXwSB4kLAbFT0GvHiMYB6QLGF20psMmX0w0xsNaz7FiwdFvPol3vwbJ8keNLGgoajqprvLi6XQaNvf1srq2vrGZm4rv72zu7dfKB40dJQoDnUeyUi1PKZBihDqKFBCK1bAAk9C0xveTP3mCJQWUXiP4xjcgPVD4QvO0EjdQrGD8IhpEI0E6DM6oUYr2WV7BrpMnIyUSIZat/DV6UU8CSBELpnWbceO0U2ZQsElTPKdREPM+JD1oW1oyALQbjo7fUJPjNKjfqRMhUhn6u+JlAVajwPPdAYMB3rRm4r/ee0E/Ws3FWGcIIR8vshPJMWITnOgPaGAoxwbwrgS5lbKB0wxjiatvAnBWXx5mTQqZee8XLm7KFUvszhy5Igck1PikCtSJbekRuqEkwfyTF7Jm/VkvVjv1se8dcXKZg7JH1ifPxEek9I=</latexit>

factors, r
<latexit sha1_base64="XIIWoNDNry9yaF+6fBtpw9CKFBg=">AAAB+3icbVBNSwMxEM36WevXWo9egkXwIGW3KnosePFYwX5Au5Rsmm1Ds8mSzErL0r/ixYMiXv0j3vw3pu0etPXBwOO9GWbmhYngBjzv21lb39jc2i7sFHf39g8O3aNS06hUU9agSijdDolhgkvWAA6CtRPNSBwK1gpHdzO/9cS04Uo+wiRhQUwGkkecErBSzy11gY0hiwgFpc0FnmLdc8texZsDrxI/J2WUo95zv7p9RdOYSaCCGNPxvQSCjGjgVLBpsZsalhA6IgPWsVSSmJkgm98+xWdW6eNIaVsS8Fz9PZGR2JhJHNrOmMDQLHsz8T+vk0J0G2RcJikwSReLolRgUHgWBO5zzSiIiSWEam5vxXRItA3CxlW0IfjLL6+SZrXiX1aqD1fl2nUeRwGdoFN0jnx0g2roHtVRA1E0Rs/oFb05U+fFeXc+Fq1rTj5zjP7A+fwB0s+UPw==</latexit>

Originally, A had mn degrees of freedom (unknown entries). If the low rank model holds, to specify
A we just need to specify U,Σ,V, and so we only need to specify (m+ n− r)r � mn parameters
(remember the orthogonality constraints in the SVD). Therefore, we might hope that it will be
possible to recover A from O(rmax(m,n)) entries.

2 Which matrices can we recover?

In the remainder of the lecture, let’s assume, to simplify writing, that m = n. We will also assume
that A is real.

Which matrices can we hope to recover?

Let e1, . . . , en denote the standard basis in Rn, i.e. ek = [0, . . . , 0, 1, 0, . . . , 0]T. Consider

A = e1e
T
n =


0 0 . . . 0 1
0 0 . . . 0 0
...

...
...

...
...

0 0 . . . 0 0

 .
Clearly, this matrix cannot be recovered unless we observe A1,n.

Consider rank-1 matrix formed by two arbitrary vectors x,y: A = xyT. So that Ai,j = xiyj .
Clearly, if a single row or a single column of A is not sampled, then recovery is not possible.

We will assume that the sampling set (the set of element of A that we observe) is random. We will
denote this set by Ω.
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3 Recovery algorithm

We hope that there exist only one low-rank matrix that is consistent with the sampled entries.
Therefore, we might try the following recovery algorithm:

minimizeÂ rank(Â)

subject to Âi,j = Ai,j for (i, j) ∈ Ω.

Similar to P0, this algorithm is NP-hard. Convex relaxation of the rank minimization problem is

minimizeÂ‖Â‖∗ (1)

subject to Âi,j = Ai,j for (i, j) ∈ Ω.

Above, ‖A‖∗ denotes the nuclear norm of A defined as

‖A‖∗ = tr
(√

ATA
)

=
n∑

i=1

σi(A),

where σi(A) are the singular values of A.

It can be shown that the nuclear norm 1-ball is the convex hull of rank-1 matrices obeying
‖xyT‖∗ ≤ 1.

Nuclear norm minimization is a convex optimization problem and, therefore, can be solved effi-
ciently. It can be reduced to semi-definite convex program (SDP).

4 Coherence

In this section we motivate coherence of a matrix, a measure that will be important for matrix
recovery. Consider examples.

Let

A =
2∑

k=1

σkuku
T
k

where u1 = (e1 + e2)/
√

2 and u2 = (e1 + e2)/
√

2, i.e.

A =


∗ ∗ 0 . . . 0
∗ ∗ 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

 .
Clearly, A cannot be recovered from a small set of entries.

Let

A = e1x
T =


x1 x2 x3 . . . xn−1 xn
0 0 0 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

0 0 0 . . . 0 0

 .
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Clearly, A cannot be recovered from a small set of entries. The intuition here is that column and
row spaces cannot be aligned with standard basis vectors.

Definition 1. Assume that rank(A) = r so that the SVD of A is given by

A = UΣVT =

r∑
k=1

σkukv
∗
k.

with U ∈ Rn×r and V ∈ Rn×r. Coherence of A with respect to standard basis, ei, is the smallest
scalar µ obeying

max
1≤k≤n

‖UTek‖2 ≤ µ
r

n
, max

1≤k≤n
‖Vek‖2 ≤ µ

r

n
.

The coherence quantifies how close are the elements of the standard basis, ek, are to the subspace
spanned by the columns of U (and V) by measuring the length of projection of ek onto these
subspaces:

To gain intuition, observe that for an n × r matrix U with orthonormal columns, the smallest µ
that can satisfy

max
1≤k≤n

‖UTek‖2 ≤ µ
r

n
(2)

is µ = 1. This happens when U consists of vectors whose entries all have magnitude 1√
n

. This is

the situation in which the eigenvectors of A have their energy uniformly spread-out across all n
dimensions. Coherence is small. We expect that recovery will be possible in this case.

On the other hand, when ek ∈ span(u1, . . . ,ur), the smallest µ that satisfies (2) is µ = n
r . Coherence

is large. It is impossible to recover A in this case.

It turns out that for many ensembles of random matrices, µ ∼ O(1) if r is sufficiently small.

The role of the coherence in this theory is also very natural, and can be understood when thinking
about the prediction of movie ratings. Here, we can imagine that the complete matrix of ratings
is (approximately) low rank because users’ preferences are correlated. Now the reason why matrix
completion is possible under incoherence is that we can exploit correlations and infer how a specific
user is going to like a movie she has not yet seen, by examining her ratings and learning about her
general preferences, and inferring how other users with such preferences have rated this particular
item. Whenever we have users or small groups of users that are very singular in the sense that
their ratings are orthogonal to those of all other users, it is not possible to correctly predict their
missing entries. Such matrices have large coherence.
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To convince oneself, consider situations where one user enter ratings based on the outcome of coin
tosses (t1, t2, . . .):

A =
1√
n

1√
(m− 1)


0
1
1
...
1


︸ ︷︷ ︸

u1

[
1 1 · · · 1

]
+


1
0
0
...
0


︸︷︷︸
u2

[
t1 t2 · · · t4

]

The rank of A is 2. However we still cannot recover A perfectly from a few measurements. This
is because if even one elements of the t1, t2, . . . is not observed, there is no way to recover it based
on other elements. The coherence of the matrix is high, because u2 = e1.

In the following we will assume that the sampling process follows the Bernoulli model, where each
entry of A is observed independently and identically with probability p. Therefore, the total number
of observations is about pn2.

5 Recovery via nuclear norm minimization

We are now ready to state the main result of this lecture.

Theorem 1 ( [6], [3]). Suppose A is fixed but otherwise arbitrary n× n matrix with coherence µ
and rank r. There exist universal constants c0, c1, c2 > 0 such that if

p ≥ c0
µr log2(n)

n

then A is the unique solution to (1) with probability at least 1− c1n
−c2 .

Similar to l1-minimization, the success of (1) in recovering the matrix A can be intuitively under-
stood geometrically and formalized via presenting a dual certificate. Here is the geometry of the
nuclear norm minimization (on the right) along with the already familiar geometry of l1 minimiza-
tion on the left, for reference:

In grey we depict the null space of the measurement operator shifted by A: this is a linear space of
all n× n matrices that agree with A on Ω and arbitrary everywhere else. A is the unique solution
of (1) if and only if there is no way to move inside the shifted null space while making the nuclear
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norm smaller. Equivalently, A is the unique solution of (1) if and only if the cone of descent of the
nuclear norm at A does not intersect the shifted null space. The nuclear ball is depicted in dark
blue in the case when A is a 2× 2 symmetric matrix, and therefore depends on 3 parameters.

Looking at the figure, we can intuitively understand why minimizing the l1 and nuclear norms
recovers sparse and low-rank objects: indeed, as the figure suggests, the cone of descent (light blue
in the left figure) to the l1 norm is ‘narrow’ at sparse vectors and, therefore, even though the null
space is of small codimension (equal to the number of measurements), it is likely that if the number
of measurements is large enough, it will miss the tangent cone. A similar observation applies to
the nuclear ball, which also appears pinched at low-rank objects.

6 Proof strategy

Similar to results on l1 minimization, the favorable geometry can be guaranteed by constructing a
dual certificate. We need the following definitions:

Definition 2. Let T denote the span of all matrices with row space or column space included in
that of A. The orthogonal projection onto T is therefore given by

PT (Z) = UUTZ + ZVVT −UUTZVVT.

and the projection onto the orthogonal complement is PT ⊥(Z) = Z− PT (Z).

To understand the definition, consider the following cases. The full proof is left as an exercise to
the reader.

Case 1: Z = U1ΛVT
1 where U1 contains a subset of columns of U and V1 contains a subset of

columns of V. Then,

PT (Z) = UUTU1ΛVT
1 + U1ΛVT

1 VVT −UUTU1ΛVT
1 VVT

= U1ΛVT
1 + U1ΛVT

1 −U1ΛVT
1

= Z.

Case 2: Z = U1ΛṼT where U1 contains a subset of columns of U and Ṽ does not contain
columns that belong to the span of columns of V. Then,

PT (Z) = UUTU1ΛṼT + U1ΛṼTVVT −UUTU1ΛṼTVVT

= U1ΛVT
1 + 0− 0

= Z.

Case 3: Z = ŨΛṼT where Ũ does not contain columns that belong to the span of columns of U
and Ṽ does not contain columns that belong to the span of columns of V. Then,

PT (Z) = UUTŨΛṼT + ŨΛṼTVVT −UUTŨΛṼTVVT

= 0 + 0− 0

= 0.
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Definition 3. Define the orthogonal projection operator onto the span of all matrices that vanish
on Ω⊥: PΩ(Z) is the matrix with PΩ(Z) = Zi,j if (i, j) ∈ Ω and zero otherwise. For convenience,
RΩ(Z) = 1

pPΩ(Z).

A sufficient condition for successful recovery can now be expressed in term of dual certificate:

Lemma 2 ( [6]). Suppose p ≥ 1
n . The matrix A is the unique optimal solution to (1) if the

following conditions hold:

1. ‖PTRΩPT − PT ‖op ≤ 1
2 .

2. There exists an approximate dual certificate Y ∈ Rn×n which satisfies PΩ(Y) = Y and

• ‖PT (Y)−UVT‖F ≤ 1
4n

• ‖PT ⊥(Y)‖ ≤ 1
2

Above ‖A‖op = supZ∈Rn×n‖A(Z)‖F /‖Z‖F is the operator norm and ‖Z‖F =
√∑

i

∑
j Zi,j =

√
tr ZTZ =

√∑
i σ

2(Z) is the Frobenius norm and ‖A‖ is the spectral norm of the matrix (the
largest singular value).

The existence of the dual certificate with the required properties can be proven via the ingenious
golfing scheme invented by David Gross [4]. We refer the reader to [6]. We complete this lecture
with the proof of Lemma 2.

Proof. The inner product between two matrices is given by 〈X,Z〉 = trace(XTZ).

Consider any feasible solution X to (1) with PΩ(X) = PΩ(A). Let G be an n × n matrix with
satisfies

‖PT ⊥(G)‖ = 1 (3)

and
〈PT ⊥(G),PT ⊥(X−A)〉 = ‖PT ⊥(X−A)‖∗. (4)

Such a matrix G always exist by the duality between the nuclear norm and the spectral norm
(exercise)1. Because UVT + PT ⊥(G) is a sub-gradient2 of ‖Z‖∗ at Z = A (exercise), we get

‖X‖∗ − ‖A‖∗ ≥
〈
UVT + PT ⊥(G),X−A

〉
.

We also have 〈Y,X−A〉 = 〈PΩ(Y),PΩ(X−A)〉 = 0 since PΩ(Y) = Y. It follows that

‖X‖∗ − ‖A‖∗ ≥
〈
UVT + PT ⊥(G)−Y,X−A

〉
(a)
= ‖PT ⊥(X−A)‖∗ +

〈
UVT − PT (Y),X−A

〉
− 〈PT ⊥(Y),X−A〉

(b)

≥ ‖PT ⊥(X−A)‖∗ − ‖UVT − PT (Y)‖F ‖PT (X−A)‖F − ‖PT ⊥(Y)‖‖PT ⊥(X−A)‖∗
(c)

≥ 1

2
‖PT ⊥(X−A)‖∗ −

1

4n
‖PT (X−A)‖F

1Let ‖·‖ be a norm on Rn. The associated dual norm, is defined as ‖z‖dual = sup{〈z,x〉 : ‖x‖ ≤ 1}.
2Vector g ∈ Rn is a subgradient of f : Rn → R at x if for all z, f(z) ≥ f(x) + gT(z− x).
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where (a) we used that Y = PT (Y) + PT ⊥(Y) and (4), (b) follows because

〈PT ⊥(Y),X−A〉 = 〈PT ⊥(Y),PT ⊥(X−A)〉 ,

UVT = PT (UVT)

so that
〈
UVT − PT (Y),X−A

〉
=
〈
UVT − PT (Y),PT (X−A)

〉
, the Frobenius norm is self-dual

and the duality between the nuclear norm and the spectral norm, and in the (c) we used conditions
2) in the Lemma.

Applying Lemma 3 below, we obtain

‖X‖∗ − ‖A‖∗ ≥
1

2
‖PT ⊥(X−A)‖∗ −

1

4n

√
2n‖PT ⊥(X−A)‖∗ >

1

8
‖PT ⊥(X−A)‖∗.

The right hand side is strictly positive for all X with PΩ(X − A) = 0 and X 6= A. Otherwise
we must have PT (X − A) = X − A and PTRΩPT (X − A) = 0, contradicting the inequality
‖PTRΩPT −PT ‖op ≤ 1

2 . This proves that A is the unique optimal solution to the program (1).

It remains to show the following technical lemma:

Lemma 3. If p ≥ 1
n and ‖PTRΩPT − PT ‖op ≤ 1

2 , then

‖PT (Z)‖F ≤
√

2n‖PT ⊥(Z)‖∗ for all Z : RΩ(Z) = 0.

Proof. Observe that

‖√pRΩPT (Z)‖F =
√
〈(PTRΩPT − PT )(Z),PT (Z)〉+ 〈PT (Z),PT (Z)〉

≥
√
‖PT (Z)‖2F − ‖PTRΩPT − PT ‖op‖PT (Z)‖2F

≥ 1√
2
‖PT (Z)‖F

where in the first equality we used the properties of orthogonal projection operators and the relation-
ship between RΩ and PΩ and the last inequality follows from the assumption ‖PTRΩPT −PT ‖op ≤
1
2 . On the other hand PΩ(Z) = 0 implies RΩ(Z) = 0 and thus

‖√pRΩPT (Z)‖F = ‖√pRΩ(Z− PT ⊥(Z))‖F
= ‖√pRΩPT ⊥(Z)‖F

≤ 1
√
p
‖PT ⊥(Z)‖F ≤

√
n‖PT ⊥(Z)‖F

where in the second equation we used that RΩ(Z) = 0. Combining the last two display equations
gives

‖PT (Z)‖F ≤
√

2n‖PT ⊥(Z)‖F ≤
√

2n‖PT ⊥(Z)‖∗.
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