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Problem 1: Gradients and Hessians

1. Using that A is symmetric, we obtain:
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∇x xTAx = Ax.

Also:
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Therefore, ∇x f(x) = Ax + b as desired.

2. Using the chain rule for derivative, we can calculate each element of the gradients as follows:
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.

This implies: ∇x f(x) = g′(h(x))∇x h(x).

3. Using the result in point 1, we can calculate each component of the Hessian as follows:[
∇2

x f(x)
]
ij

=
∂[∇x f(x)]j

∂xi
=
∂(
∑n

k=1Ajkxk + bj)

∂xi
= Aji = Aij .

Therefore, ∇2
x f(x) = A.

4. Using the results in point 2 and then the result in point 1 we obtain:

∇x g(aTx) = g′(aTx)a.

Taking the derivatives again, we get:

∇2
x g(aTx) = g′′(aTx)aaT.

1



Problem 2: Positive definite matrices

1. First check that zzT is symmetric:(
zzT

)T
=
(
zT
)T

zT = zzT.

Now, let’s check that it is positive semidefinite. Take x ∈ Rn, then

xTzzTx =
(
zTx

)T (
zTx

)
=
∥∥∥zTx

∥∥∥2
2
≥ 0.

2. By definition, x ∈ N (A) iff zzTx = 0. This is possible iff zTx = 0. Therefore,

N (A) = {x ∈ Rn|zTx = 0}.

These are all the vectors in Rn that are perpendicular to z.

All columns of zzT are collinear and are just a multiple of z. Therefore, rank(A) = 1.

3. First, check the symmetry:
(
BABT

)T
= B (BA)T = BATBT = BABT. Next, let x ∈ Rm

and y = BTx ∈ Rn. Then, because A is PSD, xTBABTx = yTAy ≥ 0. Therefore, BABT

is PSD.

Problem 3: Eigenvectors, eigenvalues, and the spectral theorem

1. Let ei ∈ Rn denote the ith canonical basis vector of Rn, [ei]j = δ[i− j]. Then,

Ati = TΛT−1ti = TΛT−1Tei = TΛei = Tλiei = λiti.

2. Follows directly from the problem before, as U−1 = UT.

3. Suppose there exists i ∈ {1 . . . n} with λi < 0. Let vi, vi 6= 0 be a corresponding eigenvector.
Then vT

i Avi = vT
i λivi = λi ‖vi‖22 < 0. But as A is PSD xTAx ≥ 0 for all x ∈ Rn. This is a

contradiction and therefore λi ≥ 0, for all i ∈ {1 . . . n}.

Problem 5: Linear regression and gradient descent

See ps1 sol problem5.ipynb file.

Problem 6: High-dimensional regression (exam practice)

1. The least squares solution is defined as

θ̂ = arg min
θ

J(θ)

where

J(θ) =
1

2
(Xθ− y)T(Xθ− y).
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To minimize J(θ), let’s calculate ∇θ J(θ):

∇θ J(θ) = ∇θ
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y).

To minimize J(θ) we set ∇θ J(θ) = 0 which yields:

XT(Xθ̂− y) = 0.

Above, θ̂ denotes the optimal value for θ, i.e. the one that minimizes J(θ).

Rearranging the terms we obtain the normal equations:

XTXθ̂ = XT
y.

So the value of θ̂ that minimizes J(θ) is given in closed form by the equation:

θ̂ = (XTX)−1XT
y.

2. The p× p matrix XTX needs to be full-rank.

This is possible when all the columns of X are linearly independent. The necessary condition
is n ≥ p.
If n < p, XTX cannot be full-rank. Here is why:

rank(XTX) ≤ min(rank(XT), rank(X)) ≤ min(n, p) = n < p. (1)

3. First note,

θ̂ = (XTX)−1XT
y

= (XTX)−1XT(Xθ + n)

= θ + (XTX)−1XT
n.

Therefore,

E
[
θ̂

]
= θ + E

[
(XTX)−1XT

n

]
= θ.
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