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Problem 1: Gradients and Hessians

1. Using that A is symmetric, we obtain:
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Therefore, V, f(x) = Ax + b as desired.

2. Using the chain rule for derivative, we can calculate each element of the gradients as follows:
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This implies: V, f(z) = ¢'(h(z)) Vi h(x).

3. Using the result in point 1, we can calculate each component of the Hessian as follows:
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Therefore, V2 f(z) = A.
4. Using the results in point 2 and then the result in point 1 we obtain:
Vxgla'x) = ¢'(a’x)a.
Taking the derivatives again, we get:

Viga™x) = ¢"(a"x)aa’.



Problem 2: Positive definite matrices

1. First check that zz" is symmetric:

T T
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Now, let’s check that it is positive semidefinite. Take x € R™, then
T 2
x'zz x = (sz> (sz> = ZTXH > 0.
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2. By definition, x € AN(A) iff zz"x = 0. This is possible iff zx = 0. Therefore,
N(A) ={x eR"z'x =0}
These are all the vectors in R” that are perpendicular to z.

All columns of zz" are collinear and are just a multiple of z. Therefore, rank(A) = 1.

3. First, check the symmetry: (BABT)" = B(BA)T = BATBT = BABT. Next, let x € R™
and y = BTx € R”. Then, because A is PSD, x'BAB"x = y"Ay > 0. Therefore, BABT
is PSD.

Problem 3: Eigenvectors, eigenvalues, and the spectral theorem

1. Let e; € R™ denote the ith canonical basis vector of R", [e;]. = d[i — j]. Then,

J
At; = TAT ', = TAT 'Te; = TAe; = Thie; = \it;.

2. Follows directly from the problem before, as U™! = UT.

3. Suppose there exists i € {1...n} with \; < 0. Let v;, v; # 0 be a corresponding eigenvector.
Then v] Av; = v/ \iv; = \; H’UZH§ < 0. But as A is PSD x"Ax > 0 for all x € R”. This is a
contradiction and therefore A; > 0, for all : € {1...n}.

Problem 5: Linear regression and gradient descent

See ps1_sol_problem5.ipynb file.

Problem 6: High-dimensional regression (exam practice)

1. The least squares solution is defined as

A~

6 = arg min J(0)
0

where

7(0) = 5(X0 — )T (X6 — ).
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To minimize J(0), let’s calculate Vg J(0):
1
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To minimize J(0) we set Vg J(6) = 0 which yields:
XT(X6—y) =0.
Above, 6 denotes the optimal value for 0, i.e. the one that minimizes .J (0).
Rearranging the terms we obtain the normal equations:
X™X6=X"y.
So the value of  that minimizes J(8) is given in closed form by the equation:
6=X"X)"'XTy.

. The p x p matrix XX needs to be full-rank.

This is possible when all the columns of X are linearly independent. The necessary condition
isn > p.

If n < p, XTX cannot be full-rank. Here is why:

rank(X " X) < min(rank(X"), rank(X)) < min(n, p) = n < p. (1)
. First note,
6=(X"X)"'XTy
= (X™X)"'XT(X6 +m)
=0+ (X'X)"'X™m.
Therefore,

E [é} —0+E [(XTX)—lem} — .



