
MLISP: Machine Learning in Signal Processing

Problem set 1

Prof. V. I. Morgenshtern

Problem 1: Gradients and Hessians [Ref: Stanford CS229 class]

Do not use lecture notes handouts or discussion handouts for this exercise. Recall that a matrix
A ∈ Rn×n is symmetric if AT = A, that is, Aij = Aji for all i, j. Also recall the gradient ∇ f(x)
of a function f : Rn → R, is the n-vector of partial derivatives

∇ f(x) =


∂

∂x1
f(x)
...

∂
∂xn

f(x)
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The Hessian ∇2 f(x) of a function f : Rn → R is the n × n symmetric matrix of twice partial
derivatives,
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 .
1. Let f(x) = 1

2xTAx + bTx, where A is a symmetric matrix and b ∈ Rn is a vector. What is
∇ f(x)?

2. Let f(x) = g(h(x)), where g : R→ R is differentiable and h : Rn → R is differentiable. What
is ∇ f(x)?

3. Let f(x) = 1
2xTAx + bTx, where A is a symmetric matrix and b ∈ Rn is a vector. What is

∇2 f(x)?

4. Let f(x) = g(aTx), where g : R → R is continuously differentiable and a ∈ Rn is a vector.
What are ∇ f(x) and ∇2 f(x)?

Problem 2: Positive definite matrices [Ref: Stanford CS229 class]

A matrix A ∈ Rn×n is positive semi-definite (PSD), denoted A � 0, if A = AT and xTAx ≥ 0
for all x ∈ Rn. A matrix A is positive definite, denoted A � 0, if A = AT and xTAx > 0 for all
x 6= 0.

1. Let z ∈ Rn be an n-vector. Show that A = zzT is positive semidefinite.

2. Let z ∈ Rn be a non-zero n-vector. Let A = zzT. What is the null-space of A? What is the
rank of A?
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3. Let A ∈ Rn×n be positive semidefinite and B ∈ Rm×n be arbitrary. Is BABT PSD? If so,
prove it. If not, give a counterexample with explicit A, B.

Problem 3: Eigenvectors, eigenvalues, and the spectral theorem [Ref: Stanford CS229
class]

The eigenvalues of an n × n matrix A ∈ Rn×n are the roots of the characteristic polynomial
pA(λ) = det(λI−A), which may (in general) be complex. They are also defined as the the values
λ ∈ C for which there exists a vector x ∈ Cn such that Ax = λx. We call such a pair (x, λ) an
eigenvector, eigenvalue pair. In this question, we use the notation diag(λ1, . . . , λn) to denote the
diagonal matrix with diagonal entries λ1, . . . , λn, that is,

diag(λ1, . . . , λn) =


λ1 0 0 0
0 λ2 0 0
...
0 0 0 λn

 .

1. Suppose that the matrix A ∈ Rn×n is diagonalizable, that is, A = TΛT−1 for an invertible
matrix T ∈ Rn×n, where Λ = diag(λ1, . . . , λn) is diagonal. Use the notation ti for the
columns of T, so that T = [t1 · · · tn], where ti ∈ Rn. Show that Ati = λiti, so that the
eigenvalues/eigenvector pairs of A are (ti, λi).

A matrix U ∈ Rn×n is orthogonal if UTU = I. The spectral theorem, perhaps one of the most
important theorems in linear algebra, states that if A ∈ Rn×n is symmetric, that is, A = AT, then
A is diagonalizable by a real orthogonal matrix. That is, there are a diagonal matrix Λ ∈ Rn×n and
orthogonal matrix U ∈ Rn×n such that UTAU = Λ, or, equivalently, A = UΛUT. Let λi = λi(A)
denote the ith eigenvalue of A.

2. Let A be symmetric. Show that if U = [u1 · · ·un] is orthogonal, where ui ∈ Rn and A =
UΛUT, then ui is an eigenvector of A and Aui = λiui, where Λ = diag(λ1, . . . , λn).

3. Show that if A is positive semi-definite, then λi(A) ≥ 0 for each i.

Problem 4: Python and Jupyter notebooks

Python is quickly becoming a standard language for machine learning, data science, and artificial
intelligence. Many of the exercises for this class are computer-based. Even though you are free to
use the language of your choice to do these exercises, it is highly recommended that you use Python
and work in Jupyter notebook. Jupyter notebook is a powerful interactive web-based interface for
Python. In this exercise, assuming that you know Python, we ask to to install Jupyter notebook
and familiarize yourself with it. Here is a tutorial you can use: https://www.dataquest.io/blog/
jupyter-notebook-tutorial. In the notebook read data.ipynb you will find a basic snippet of
Python code to read the data necessary in the exercise below.
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Problem 5: Linear regression and gradient descent

The file house prices.txt contains a data set of house prices: the first column is the house size in
square feet, the second column is the number of bedrooms, the third column is the price in USD.

1. Plot house prices vs. house sizes as a scatter plot.

2. Next, fit the linear regression to these data points. You should not use a software package to
do this. Instead, follow the instructions:

• Consider the linear model hθ(x) = θ0x0 + θ1x1 = θTx, where x1 is the house size in the
first column of house prices.txt, x0 = 1 by convention, x = [x0, x1]

T, and θ = [θ0, θ1]
T.

Define the cost function on the dataset:

J(θ) =
1

2n

n∑
i=1

(
hθ(x(i))− y(i)

)2
. (1)

Above, n is the number of rows in house prices.txt, y(i) are the house prices in the

third column of the file, x(i) = [1 x
(i)
1 ]T and x

(i)
1 is the house size in the first column and

ith row of the file. Plot J(θ) as a function of θ using the contour plot. You should see
a figure similar to ‘Contour plot of J(·)’ in the lecture notes of Lecture 1.

• Start with some initial value θ0 and run the steps of the gradient descent algorithm
as explained in Lecture 1. Plot the location of each new θj on the scatter plot you
made above. [Hint: make your gradient descent algorithm easily adjustable to different
amounts of x and theta values, so you can reuse it in later problems]

• Make changes to the learning rate of the gradient descent algorithm. Observe how the
path of the algorithm changes. Make sure that the algorithm converges to the true
minimum of the function J(θ). [Hint: use different alphas for the two x dimensions, to
get a better convergence rate. To calculate the convergence rate divide the new cost by
the old cost after each iteration]

• Use the closed form solution for θ:

θ̂ = (XTX)−1XTy. (2)

Above, y = [y(1), · · · y(n)]T and X is the data matrix whose rows are x(i). Is the the
same point that you have found above using gradient descent?

3. Consider the function J(θ0, θ1) = θ20 cos(θ1) on the interval [−1, 1]× [−2π, 2π].

• Plot the contour plot of this function.

• Use gradient descent as above to find the minimum of this function. Plot the location
of each new θj on the scatter plot you made above.

• Experiment with the learning rate and the initial point. Do you always find the same
minimum?
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Problem 6: High-dimensional regression (exam practice)

We have the following regression model

y = Xθ + n

where y ∈ Rn, X ∈ Rn×p, θ ∈ Rp, n ∈ Rn, n is zero-mean and Var
[
n
]

= σ2I.

1. Calculate θ̂, the least squares estimate of θ. Please do the derivation.

2. What assumption on X ∈ Rn×p do you need to invert XTX? What does this assumption
mean for the relation between n and p?

3. Calculate the expected value of θ̂.
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