
21.6.18, 22(00Neural networks and deep learning

Page 1 of 70http://neuralnetworksanddeeplearning.com/chap6.html

In the last chapter we learned that deep neural networks are often
much harder to train than shallow neural networks. That's
unfortunate, since we have good reason to believe that if we could
train deep nets they'd be much more powerful than shallow nets.
But while the news from the last chapter is discouraging, we won't
let it stop us. In this chapter, we'll develop techniques which can be
used to train deep networks, and apply them in practice. We'll also
look at the broader picture, briefly reviewing recent progress on
using deep nets for image recognition, speech recognition, and
other applications. And we'll take a brief, speculative look at what
the future may hold for neural nets, and for artificial intelligence.

The chapter is a long one. To help you navigate, let's take a tour.
The sections are only loosely coupled, so provided you have some
basic familiarity with neural nets, you can jump to whatever most
interests you.

The main part of the chapter is an introduction to one of the most
widely used types of deep network: deep convolutional networks.
We'll work through a detailed example - code and all - of using
convolutional nets to solve the problem of classifying handwritten
digits from the MNIST data set:

We'll start our account of convolutional networks with the shallow
networks used to attack this problem earlier in the book. Through
many iterations we'll build up more and more powerful networks.
As we go we'll explore many powerful techniques: convolutions,
pooling, the use of GPUs to do far more training than we did with

CHAPTER 6

Deep learning

Neural Networks and Deep Learning
What this book is about
On the exercises and problems
Using neural nets to recognize
handwritten digits
How the backpropagation
algorithm works
Improving the way neural
networks learn
A visual proof that neural nets can
compute any function
Why are deep neural networks
hard to train?
Deep learning
Appendix: Is there a simple
algorithm for intelligence?
Acknowledgements
Frequently Asked Questions

If you benefit from the book, please
make a small donation. I suggest $5,
but you can choose the amount.

Alternately, you can make a
donation by sending me Bitcoin, at
address
1Kd6tXH5SDAmiFb49J9hknG5pqj7KStSAx

Sponsors

Thanks to all the supporters who
made the book possible, with
especial thanks to Pavel Dudrenov.

http://neuralnetworksanddeeplearning.com/chap5.html
http://neuralnetworksanddeeplearning.com/chap6.html#convolutional_networks
http://neuralnetworksanddeeplearning.com/chap6.html
http://neuralnetworksanddeeplearning.com/chap6.html
http://neuralnetworksanddeeplearning.com/index.html
http://neuralnetworksanddeeplearning.com/about.html
http://neuralnetworksanddeeplearning.com/exercises_and_problems.html
http://neuralnetworksanddeeplearning.com/chap1.html
http://neuralnetworksanddeeplearning.com/chap2.html
http://neuralnetworksanddeeplearning.com/chap3.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap5.html
http://neuralnetworksanddeeplearning.com/chap6.html
http://neuralnetworksanddeeplearning.com/sai.html
http://neuralnetworksanddeeplearning.com/acknowledgements.html
http://neuralnetworksanddeeplearning.com/faq.html
http://gsquaredcapital.com/
http://www.tineye.com/
http://www.visionsmarts.com/
http://neuralnetworksanddeeplearning.com/supporters.html

21.6.18, 22(00Neural networks and deep learning

Page 2 of 70http://neuralnetworksanddeeplearning.com/chap6.html

our shallow networks, the algorithmic expansion of our training
data (to reduce overfitting), the use of the dropout technique (also
to reduce overfitting), the use of ensembles of networks, and others.
The result will be a system that offers near-human performance. Of
the 10,000 MNIST test images - images not seen during training! -
our system will classify 9,967 correctly. Here's a peek at the 33
images which are misclassified. Note that the correct classification
is in the top right; our program's classification is in the bottom
right:

Many of these are tough even for a human to classify. Consider, for
example, the third image in the top row. To me it looks more like a
"9" than an "8", which is the official classification. Our network also
thinks it's a "9". This kind of "error" is at the very least
understandable, and perhaps even commendable. We conclude our
discussion of image recognition with a survey of some of the
spectacular recent progress using networks (particularly
convolutional nets) to do image recognition.

The remainder of the chapter discusses deep learning from a

Thanks also to all the contributors to
the Bugfinder Hall of Fame.

Resources
Michael Nielsen on Twitter

Book FAQ

Code repository

Michael Nielsen's project
announcement mailing list

Deep Learning, book by Ian
Goodfellow, Yoshua Bengio, and
Aaron Courville

cognitivemedium.com

By Michael Nielsen / Dec 2017

http://neuralnetworksanddeeplearning.com/bugfinder.html
https://twitter.com/michael_nielsen
http://neuralnetworksanddeeplearning.com/faq.html
https://github.com/mnielsen/neural-networks-and-deep-learning
http://eepurl.com/0Xxjb
http://www.deeplearningbook.org/
http://cognitivemedium.com/
http://michaelnielsen.org/
http://michaelnielsen.org/

21.6.18, 22(00Neural networks and deep learning

Page 3 of 70http://neuralnetworksanddeeplearning.com/chap6.html

broader and less detailed perspective. We'll briefly survey other
models of neural networks, such as recurrent neural nets and long
short-term memory units, and how such models can be applied to
problems in speech recognition, natural language processing, and
other areas. And we'll speculate about the future of neural networks
and deep learning, ranging from ideas like intention-driven user
interfaces, to the role of deep learning in artificial intelligence.

The chapter builds on the earlier chapters in the book, making use
of and integrating ideas such as backpropagation, regularization,
the softmax function, and so on. However, to read the chapter you
don't need to have worked in detail through all the earlier chapters.
It will, however, help to have read Chapter 1, on the basics of neural
networks. When I use concepts from Chapters 2 to 5, I provide links
so you can familiarize yourself, if necessary.

It's worth noting what the chapter is not. It's not a tutorial on the
latest and greatest neural networks libraries. Nor are we going to be
training deep networks with dozens of layers to solve problems at
the very leading edge. Rather, the focus is on understanding some
of the core principles behind deep neural networks, and applying
them in the simple, easy-to-understand context of the MNIST
problem. Put another way: the chapter is not going to bring you
right up to the frontier. Rather, the intent of this and earlier
chapters is to focus on fundamentals, and so to prepare you to
understand a wide range of current work.

Introducing convolutional networks
In earlier chapters, we taught our neural networks to do a pretty
good job recognizing images of handwritten digits:

http://neuralnetworksanddeeplearning.com/chap6.html#things_we_didn't_cover_but_which_you'll_eventually_want_to_know
http://neuralnetworksanddeeplearning.com/chap1.html

21.6.18, 22(00Neural networks and deep learning

Page 4 of 70http://neuralnetworksanddeeplearning.com/chap6.html

We did this using networks in which adjacent network layers are
fully connected to one another. That is, every neuron in the network
is connected to every neuron in adjacent layers:

In particular, for each pixel in the input image, we encoded the
pixel's intensity as the value for a corresponding neuron in the
input layer. For the pixel images we've been using, this
means our network has () input neurons. We then
trained the network's weights and biases so that the network's
output would - we hope! - correctly identify the input image: '0', '1',
'2', ..., '8', or '9'.

Our earlier networks work pretty well: we've obtained a
classification accuracy better than 98 percent, using training and
test data from the MNIST handwritten digit data set. But upon
reflection, it's strange to use networks with fully-connected layers to
classify images. The reason is that such a network architecture does
not take into account the spatial structure of the images. For
instance, it treats input pixels which are far apart and close together
on exactly the same footing. Such concepts of spatial structure must
instead be inferred from the training data. But what if, instead of
starting with a network architecture which is tabula rasa, we used
an architecture which tries to take advantage of the spatial
structure? In this section I describe convolutional neural

28 × 28
784 = 28 × 28

*The origins of convolutional neural networks go

http://neuralnetworksanddeeplearning.com/chap3.html#98percent
http://neuralnetworksanddeeplearning.com/chap1.html#learning_with_gradient_descent

21.6.18, 22(00Neural networks and deep learning

Page 5 of 70http://neuralnetworksanddeeplearning.com/chap6.html

networks*. These networks use a special architecture which is
particularly well-adapted to classify images. Using this architecture
makes convolutional networks fast to train. This, in turn, helps us
train deep, many-layer networks, which are very good at classifying
images. Today, deep convolutional networks or some close variant
are used in most neural networks for image recognition.

Convolutional neural networks use three basic ideas: local receptive
fields, shared weights, and pooling. Let's look at each of these ideas
in turn.

Local receptive fields: In the fully-connected layers shown
earlier, the inputs were depicted as a vertical line of neurons. In a
convolutional net, it'll help to think instead of the inputs as a

 square of neurons, whose values correspond to the
pixel intensities we're using as inputs:

As per usual, we'll connect the input pixels to a layer of hidden
neurons. But we won't connect every input pixel to every hidden
neuron. Instead, we only make connections in small, localized
regions of the input image.

To be more precise, each neuron in the first hidden layer will be
connected to a small region of the input neurons, say, for example,
a region, corresponding to input pixels. So, for a particular
hidden neuron, we might have connections that look like this:

back to the 1970s. But the seminal paper
establishing the modern subject of convolutional
networks was a 1998 paper, "Gradient-based
learning applied to document recognition", by
Yann LeCun, Léon Bottou, Yoshua Bengio, and
Patrick Haffner. LeCun has since made an
interesting remark on the terminology for
convolutional nets: "The [biological] neural
inspiration in models like convolutional nets is
very tenuous. That's why I call them
'convolutional nets' not 'convolutional neural
nets', and why we call the nodes 'units' and not
'neurons' ". Despite this remark, convolutional
nets use many of the same ideas as the neural
networks we've studied up to now: ideas such as
backpropagation, gradient descent,
regularization, non-linear activation functions,
and so on. And so we will follow common
practice, and consider them a type of neural
network. I will use the terms "convolutional
neural network" and "convolutional net(work)"
interchangeably. I will also use the terms "
[artificial] neuron" and "unit" interchangeably.

28 × 28 28 × 28

5 × 5 25

http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
https://www.facebook.com/yann.lecun/posts/10152348155137143

21.6.18, 22(00Neural networks and deep learning

Page 6 of 70http://neuralnetworksanddeeplearning.com/chap6.html

That region in the input image is called the local receptive field for
the hidden neuron. It's a little window on the input pixels. Each
connection learns a weight. And the hidden neuron learns an
overall bias as well. You can think of that particular hidden neuron
as learning to analyze its particular local receptive field.

We then slide the local receptive field across the entire input image.
For each local receptive field, there is a different hidden neuron in
the first hidden layer. To illustrate this concretely, let's start with a
local receptive field in the top-left corner:

Then we slide the local receptive field over by one pixel to the right
(i.e., by one neuron), to connect to a second hidden neuron:

21.6.18, 22(00Neural networks and deep learning

Page 7 of 70http://neuralnetworksanddeeplearning.com/chap6.html

And so on, building up the first hidden layer. Note that if we have a
 input image, and local receptive fields, then there will

be neurons in the hidden layer. This is because we can only
move the local receptive field neurons across (or neurons
down), before colliding with the right-hand side (or bottom) of the
input image.

I've shown the local receptive field being moved by one pixel at a
time. In fact, sometimes a different stride length is used. For
instance, we might move the local receptive field pixels to the
right (or down), in which case we'd say a stride length of is used.
In this chapter we'll mostly stick with stride length , but it's worth
knowing that people sometimes experiment with different stride
lengths*.

Shared weights and biases: I've said that each hidden neuron
has a bias and weights connected to its local receptive field.
What I did not yet mention is that we're going to use the same
weights and bias for each of the hidden neurons. In other
words, for the th hidden neuron, the output is:

Here, is the neural activation function - perhaps the sigmoid
function we used in earlier chapters. is the shared value for the

28 × 28 5 × 5
24 × 24

23 23

2
2

1

*As was done in earlier chapters, if we're
interested in trying different stride lengths then
we can use validation data to pick out the stride
length which gives the best performance. For
more details, see the earlier discussion of how to
choose hyper-parameters in a neural network.
The same approach may also be used to choose
the size of the local receptive field - there is, of
course, nothing special about using a local
receptive field. In general, larger local receptive
fields tend to be helpful when the input images
are significantly larger than the pixel
MNIST images.

5 × 5

28 × 28

5 × 5

24 × 24
j, k

σ (b +) .∑
l= 0

4

∑
m= 0

4
wl,maj+ l,k+ m (125)

σ
b

http://neuralnetworksanddeeplearning.com/chap1.html#sigmoid_neurons
http://neuralnetworksanddeeplearning.com/chap3.html#how_to_choose_a_neural_network's_hyper-parameters

21.6.18, 22(00Neural networks and deep learning

Page 8 of 70http://neuralnetworksanddeeplearning.com/chap6.html

bias. is a array of shared weights. And, finally, we use
to denote the input activation at position .

This means that all the neurons in the first hidden layer detect
exactly the same feature*, just at different locations in the input
image. To see why this makes sense, suppose the weights and bias
are such that the hidden neuron can pick out, say, a vertical edge in
a particular local receptive field. That ability is also likely to be
useful at other places in the image. And so it is useful to apply the
same feature detector everywhere in the image. To put it in slightly
more abstract terms, convolutional networks are well adapted to
the translation invariance of images: move a picture of a cat (say) a
little ways, and it's still an image of a cat*.

For this reason, we sometimes call the map from the input layer to
the hidden layer a feature map. We call the weights defining the
feature map the shared weights. And we call the bias defining the
feature map in this way the shared bias. The shared weights and
bias are often said to define a kernel or filter. In the literature,
people sometimes use these terms in slightly different ways, and for
that reason I'm not going to be more precise; rather, in a moment,
we'll look at some concrete examples.

The network structure I've described so far can detect just a single
kind of localized feature. To do image recognition we'll need more
than one feature map. And so a complete convolutional layer
consists of several different feature maps:

wl,m 5 × 5 ax,y

x, y

*I haven't precisely defined the notion of a
feature. Informally, think of the feature detected
by a hidden neuron as the kind of input pattern
that will cause the neuron to activate: it might be
an edge in the image, for instance, or maybe
some other type of shape.

*In fact, for the MNIST digit classification
problem we've been studying, the images are
centered and size-normalized. So MNIST has
less translation invariance than images found "in
the wild", so to speak. Still, features like edges
and corners are likely to be useful across much of
the input space.

21.6.18, 22(00Neural networks and deep learning

Page 9 of 70http://neuralnetworksanddeeplearning.com/chap6.html

In the example shown, there are feature maps. Each feature map
is defined by a set of shared weights, and a single shared bias.
The result is that the network can detect different kinds of
features, with each feature being detectable across the entire image.

I've shown just feature maps, to keep the diagram above simple.
However, in practice convolutional networks may use more (and
perhaps many more) feature maps. One of the early convolutional
networks, LeNet-5, used feature maps, each associated to a
local receptive field, to recognize MNIST digits. So the example
illustrated above is actually pretty close to LeNet-5. In the examples
we develop later in the chapter we'll use convolutional layers with

 and feature maps. Let's take a quick peek at some of the
features which are learned*:

The images correspond to different feature maps (or filters, or

3
5 × 5

3

3

6 5 × 5

20 40
*The feature maps illustrated come from the
final convolutional network we train, see here.

20 20

21.6.18, 22(00Neural networks and deep learning

Page 10 of 70http://neuralnetworksanddeeplearning.com/chap6.html

kernels). Each map is represented as a block image,
corresponding to the weights in the local receptive field.
Whiter blocks mean a smaller (typically, more negative) weight, so
the feature map responds less to corresponding input pixels. Darker
blocks mean a larger weight, so the feature map responds more to
the corresponding input pixels. Very roughly speaking, the images
above show the type of features the convolutional layer responds to.

So what can we conclude from these feature maps? It's clear there is
spatial structure here beyond what we'd expect at random: many of
the features have clear sub-regions of light and dark. That shows
our network really is learning things related to the spatial structure.
However, beyond that, it's difficult to see what these feature
detectors are learning. Certainly, we're not learning (say) the Gabor
filters which have been used in many traditional approaches to
image recognition. In fact, there's now a lot of work on better
understanding the features learnt by convolutional networks. If
you're interested in following up on that work, I suggest starting
with the paper Visualizing and Understanding Convolutional
Networks by Matthew Zeiler and Rob Fergus (2013).

A big advantage of sharing weights and biases is that it greatly
reduces the number of parameters involved in a convolutional
network. For each feature map we need shared weights,
plus a single shared bias. So each feature map requires
parameters. If we have feature maps that's a total of

 parameters defining the convolutional layer. By
comparison, suppose we had a fully connected first layer, with

 input neurons, and a relatively modest hidden
neurons, as we used in many of the examples earlier in the book.
That's a total of weights, plus an extra biases, for a total
of parameters. In other words, the fully-connected layer
would have more than times as many parameters as the

5 × 5
5 × 5

25 = 5 × 5
26

20
20 × 26 = 520

784 = 28 × 28 30

784 × 30 30
23, 550

40

http://en.wikipedia.org/wiki/Gabor_filter
http://arxiv.org/abs/1311.2901

21.6.18, 22(00Neural networks and deep learning

Page 11 of 70http://neuralnetworksanddeeplearning.com/chap6.html

convolutional layer.

Of course, we can't really do a direct comparison between the
number of parameters, since the two models are different in
essential ways. But, intuitively, it seems likely that the use of
translation invariance by the convolutional layer will reduce the
number of parameters it needs to get the same performance as the
fully-connected model. That, in turn, will result in faster training
for the convolutional model, and, ultimately, will help us build deep
networks using convolutional layers.

Incidentally, the name convolutional comes from the fact that the
operation in Equation (125) is sometimes known as a convolution.
A little more precisely, people sometimes write that equation as

, where denotes the set of output activations
from one feature map, is the set of input activations, and is
called a convolution operation. We're not going to make any deep
use of the mathematics of convolutions, so you don't need to worry
too much about this connection. But it's worth at least knowing
where the name comes from.

Pooling layers: In addition to the convolutional layers just
described, convolutional neural networks also contain pooling
layers. Pooling layers are usually used immediately after
convolutional layers. What the pooling layers do is simplify the
information in the output from the convolutional layer.

In detail, a pooling layer takes each feature map* output from the
convolutional layer and prepares a condensed feature map. For
instance, each unit in the pooling layer may summarize a region of
(say) neurons in the previous layer. As a concrete example,
one common procedure for pooling is known as max-pooling. In
max-pooling, a pooling unit simply outputs the maximum
activation in the input region, as illustrated in the following

= σ(b + w ∗)a1 a0 a1

a0 ∗

*The nomenclature is being used loosely here. In
particular, I'm using "feature map" to mean not
the function computed by the convolutional
layer, but rather the activation of the hidden
neurons output from the layer. This kind of mild
abuse of nomenclature is pretty common in the
research literature.2 × 2

2 × 2

21.6.18, 22(00Neural networks and deep learning

Page 12 of 70http://neuralnetworksanddeeplearning.com/chap6.html

diagram:

Note that since we have neurons output from the
convolutional layer, after pooling we have neurons.

As mentioned above, the convolutional layer usually involves more
than a single feature map. We apply max-pooling to each feature
map separately. So if there were three feature maps, the combined
convolutional and max-pooling layers would look like:

We can think of max-pooling as a way for the network to ask
whether a given feature is found anywhere in a region of the image.
It then throws away the exact positional information. The intuition
is that once a feature has been found, its exact location isn't as
important as its rough location relative to other features. A big
benefit is that there are many fewer pooled features, and so this
helps reduce the number of parameters needed in later layers.

Max-pooling isn't the only technique used for pooling. Another
common approach is known as L2 pooling. Here, instead of taking

24 × 24
12 × 12

21.6.18, 22(00Neural networks and deep learning

Page 13 of 70http://neuralnetworksanddeeplearning.com/chap6.html

the maximum activation of a region of neurons, we take the
square root of the sum of the squares of the activations in the
region. While the details are different, the intuition is similar to
max-pooling: L2 pooling is a way of condensing information from
the convolutional layer. In practice, both techniques have been
widely used. And sometimes people use other types of pooling
operation. If you're really trying to optimize performance, you may
use validation data to compare several different approaches to
pooling, and choose the approach which works best. But we're not
going to worry about that kind of detailed optimization.

Putting it all together: We can now put all these ideas together
to form a complete convolutional neural network. It's similar to the
architecture we were just looking at, but has the addition of a layer
of output neurons, corresponding to the possible values for
MNIST digits ('0', '1', '2', etc):

The network begins with input neurons, which are used to
encode the pixel intensities for the MNIST image. This is then
followed by a convolutional layer using a local receptive field
and feature maps. The result is a layer of hidden
feature neurons. The next step is a max-pooling layer, applied to

 regions, across each of the feature maps. The result is a layer
of hidden feature neurons.

The final layer of connections in the network is a fully-connected

2 × 2
2 × 2

10 10

28 × 28

5 × 5
3 3 × 24 × 24

2 × 2 3
3 × 12 × 12

21.6.18, 22(00Neural networks and deep learning

Page 14 of 70http://neuralnetworksanddeeplearning.com/chap6.html

layer. That is, this layer connects every neuron from the max-
pooled layer to every one of the output neurons. This fully-
connected architecture is the same as we used in earlier chapters.
Note, however, that in the diagram above, I've used a single arrow,
for simplicity, rather than showing all the connections. Of course,
you can easily imagine the connections.

This convolutional architecture is quite different to the
architectures used in earlier chapters. But the overall picture is
similar: a network made of many simple units, whose behaviors are
determined by their weights and biases. And the overall goal is still
the same: to use training data to train the network's weights and
biases so that the network does a good job classifying input digits.

In particular, just as earlier in the book, we will train our network
using stochastic gradient descent and backpropagation. This mostly
proceeds in exactly the same way as in earlier chapters. However,
we do need to make a few modifications to the backpropagation
procedure. The reason is that our earlier derivation of
backpropagation was for networks with fully-connected layers.
Fortunately, it's straightforward to modify the derivation for
convolutional and max-pooling layers. If you'd like to understand
the details, then I invite you to work through the following problem.
Be warned that the problem will take some time to work through,
unless you've really internalized the earlier derivation of
backpropagation (in which case it's easy).

Problem

Backpropagation in a convolutional network The core
equations of backpropagation in a network with fully-
connected layers are (BP1)-(BP4) (link). Suppose we have a
network containing a convolutional layer, a max-pooling layer,
and a fully-connected output layer, as in the network discussed

10

http://neuralnetworksanddeeplearning.com/chap2.html
http://neuralnetworksanddeeplearning.com/chap2.html
http://neuralnetworksanddeeplearning.com/chap2.html#backpropsummary
Veniamin Morgenshtern
PS 5, problem 4-1.

21.6.18, 22(00Neural networks and deep learning

Page 15 of 70http://neuralnetworksanddeeplearning.com/chap6.html

above. How are the equations of backpropagation modified?

Convolutional neural networks in
practice
We've now seen the core ideas behind convolutional neural
networks. Let's look at how they work in practice, by implementing
some convolutional networks, and applying them to the MNIST
digit classification problem. The program we'll use to do this is
called network3.py, and it's an improved version of the programs
network.py and network2.py developed in earlier chapters*. If you
wish to follow along, the code is available on GitHub. Note that we'll
work through the code for network3.py itself in the next section. In
this section, we'll use network3.py as a library to build convolutional
networks.

The programs network.py and network2.py were implemented using
Python and the matrix library Numpy. Those programs worked
from first principles, and got right down into the details of
backpropagation, stochastic gradient descent, and so on. But now
that we understand those details, for network3.py we're going to use
a machine learning library known as Theano*. Using Theano makes
it easy to implement backpropagation for convolutional neural
networks, since it automatically computes all the mappings
involved. Theano is also quite a bit faster than our earlier code
(which was written to be easy to understand, not fast), and this
makes it practical to train more complex networks. In particular,
one great feature of Theano is that it can run code on either a CPU
or, if available, a GPU. Running on a GPU provides a substantial
speedup and, again, helps make it practical to train more complex
networks.

If you wish to follow along, then you'll need to get Theano running

*Note also that network3.py incorporates
ideas from the Theano library's documentation
on convolutional neural nets (notably the
implementation of LeNet-5), from Misha Denil's
implementation of dropout, and from Chris
Olah.

*See Theano: A CPU and GPU Math Expression
Compiler in Python, by James Bergstra, Olivier
Breuleux, Frederic Bastien, Pascal Lamblin,
Ravzan Pascanu, Guillaume Desjardins, Joseph
Turian, David Warde-Farley, and Yoshua Bengio
(2010). Theano is also the basis for the popular
Pylearn2 and Keras neural networks libraries.
Other popular neural nets libraries at the time of
this writing include Caffe and Torch.

https://github.com/mnielsen/neural-networks-and-deep-learning/blob/master/src/network3.py
http://deeplearning.net/software/theano/
http://deeplearning.net/tutorial/lenet.html
https://github.com/mdenil/dropout
http://colah.github.io/
http://www.iro.umontreal.ca/~lisa/pointeurs/theano_scipy2010.pdf
http://deeplearning.net/software/pylearn2/
http://keras.io/
http://caffe.berkeleyvision.org/
http://torch.ch/

21.6.18, 22(00Neural networks and deep learning

Page 16 of 70http://neuralnetworksanddeeplearning.com/chap6.html

on your system. To install Theano, follow the instructions at the
project's homepage. The examples which follow were run using
Theano 0.6*. Some were run under Mac OS X Yosemite, with no
GPU. Some were run on Ubuntu 14.04, with an NVIDIA GPU. And
some of the experiments were run under both. To get network3.py
running you'll need to set the GPU flag to either True or False (as
appropriate) in the network3.py source. Beyond that, to get Theano
up and running on a GPU you may find the instructions here
helpful. There are also tutorials on the web, easily found using
Google, which can help you get things working. If you don't have a
GPU available locally, then you may wish to look into Amazon Web
Services EC2 G2 spot instances. Note that even with a GPU the code
will take some time to execute. Many of the experiments take from
minutes to hours to run. On a CPU it may take days to run the most
complex of the experiments. As in earlier chapters, I suggest setting
things running, and continuing to read, occasionally coming back to
check the output from the code. If you're using a CPU, you may
wish to reduce the number of training epochs for the more complex
experiments, or perhaps omit them entirely.

To get a baseline, we'll start with a shallow architecture using just a
single hidden layer, containing hidden neurons. We'll train for

 epochs, using a learning rate of , a mini-batch size of ,
and no regularization. Here we go*:

>>> import network3
>>> from network3 import Network
>>> from network3 import ConvPoolLayer, FullyConnectedLayer, SoftmaxLayer
>>> training_data, validation_data, test_data = network3.load_data_shared()
>>> mini_batch_size = 10
>>> net = Network([
 FullyConnectedLayer(n_in=784, n_out=100),
 SoftmaxLayer(n_in=100, n_out=10)], mini_batch_size)
>>> net.SGD(training_data, 60, mini_batch_size, 0.1,
 validation_data, test_data)

I obtained a best classification accuracy of percent. This is the
classification accuracy on the test_data, evaluated at the training

*As I release this chapter, the current version of
Theano has changed to version 0.7. I've actually
rerun the examples under Theano 0.7 and get
extremely similar results to those reported in the
text.

100
60 η = 0.1 10

*Code for the experiments in this section may be
found in this script. Note that the code in the
script simply duplicates and parallels the
discussion in this section.

Note also that throughout the section I've
explicitly specified the number of training
epochs. I've done this for clarity about how we're
training. In practice, it's worth using early
stopping, that is, tracking accuracy on the
validation set, and stopping training when we
are confident the validation accuracy has
stopped improving.

97.80

http://deeplearning.net/software/theano/
http://deeplearning.net/software/theano/tutorial/using_gpu.html
http://aws.amazon.com/ec2/instance-types/
https://github.com/mnielsen/neural-networks-and-deep-learning/blob/master/src/conv.py
http://neuralnetworksanddeeplearning.com/chap3.html#early_stopping

21.6.18, 22(00Neural networks and deep learning

Page 17 of 70http://neuralnetworksanddeeplearning.com/chap6.html

epoch where we get the best classification accuracy on the
validation_data. Using the validation data to decide when to
evaluate the test accuracy helps avoid overfitting to the test data
(see this earlier discussion of the use of validation data). We will
follow this practice below. Your results may vary slightly, since the
network's weights and biases are randomly initialized*.

This percent accuracy is close to the percent accuracy
obtained back in Chapter 3, using a similar network architecture
and learning hyper-parameters. In particular, both examples used a
shallow network, with a single hidden layer containing hidden
neurons. Both also trained for epochs, used a mini-batch size of

, and a learning rate of .

There were, however, two differences in the earlier network. First,
we regularized the earlier network, to help reduce the effects of
overfitting. Regularizing the current network does improve the
accuracies, but the gain is only small, and so we'll hold off worrying
about regularization until later. Second, while the final layer in the
earlier network used sigmoid activations and the cross-entropy cost
function, the current network uses a softmax final layer, and the
log-likelihood cost function. As explained in Chapter 3 this isn't a
big change. I haven't made this switch for any particularly deep
reason - mostly, I've done it because softmax plus log-likelihood
cost is more common in modern image classification networks.

Can we do better than these results using a deeper network
architecture?

Let's begin by inserting a convolutional layer, right at the beginning
of the network. We'll use by local receptive fields, a stride length
of , and feature maps. We'll also insert a max-pooling layer,
which combines the features using by pooling windows. So the
overall network architecture looks much like the architecture

*In fact, in this experiment I actually did three
separate runs training a network with this
architecture. I then reported the test accuracy
which corresponded to the best validation
accuracy from any of the three runs. Using
multiple runs helps reduce variation in results,
which is useful when comparing many
architectures, as we are doing. I've followed this
procedure below, except where noted. In
practice, it made little difference to the results
obtained.

97.80 98.04

100
60

10 η = 0.1

5 5
1 20

2 2

http://neuralnetworksanddeeplearning.com/chap3.html#validation_explanation
http://neuralnetworksanddeeplearning.com/chap3.html#chap3_98_04_percent
http://neuralnetworksanddeeplearning.com/chap3.html#overfitting_and_regularization
http://neuralnetworksanddeeplearning.com/chap3.html#softmax

21.6.18, 22(00Neural networks and deep learning

Page 18 of 70http://neuralnetworksanddeeplearning.com/chap6.html

discussed in the last section, but with an extra fully-connected
layer:

In this architecture, we can think of the convolutional and pooling
layers as learning about local spatial structure in the input training
image, while the later, fully-connected layer learns at a more
abstract level, integrating global information from across the entire
image. This is a common pattern in convolutional neural networks.

Let's train such a network, and see how it performs*:

>>> net = Network([
 ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28),
 filter_shape=(20, 1, 5, 5),
 poolsize=(2, 2)),
 FullyConnectedLayer(n_in=20*12*12, n_out=100),
 SoftmaxLayer(n_in=100, n_out=10)], mini_batch_size)
>>> net.SGD(training_data, 60, mini_batch_size, 0.1,
 validation_data, test_data)

That gets us to percent accuracy, which is a considerable
improvement over any of our previous results. Indeed, we've
reduced our error rate by better than a third, which is a great
improvement.

In specifying the network structure, I've treated the convolutional
and pooling layers as a single layer. Whether they're regarded as
separate layers or as a single layer is to some extent a matter of
taste. network3.py treats them as a single layer because it makes the
code for network3.py a little more compact. However, it is easy to

*I've continued to use a mini-batch size of
here. In fact, as we discussed earlier it may be
possible to speed up training using larger mini-
batches. I've continued to use the same mini-
batch size mostly for consistency with the
experiments in earlier chapters.

10

98.78

http://neuralnetworksanddeeplearning.com/chap3.html#mini_batch_size

21.6.18, 22(00Neural networks and deep learning

Page 19 of 70http://neuralnetworksanddeeplearning.com/chap6.html

modify network3.py so the layers can be specified separately, if
desired.

Exercise

What classification accuracy do you get if you omit the fully-
connected layer, and just use the convolutional-pooling layer
and softmax layer? Does the inclusion of the fully-connected
layer help?

Can we improve on the percent classification accuracy?

Let's try inserting a second convolutional-pooling layer. We'll make
the insertion between the existing convolutional-pooling layer and
the fully-connected hidden layer. Again, we'll use a local
receptive field, and pool over regions. Let's see what happens
when we train using similar hyper-parameters to before:

>>> net = Network([
 ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28),
 filter_shape=(20, 1, 5, 5),
 poolsize=(2, 2)),
 ConvPoolLayer(image_shape=(mini_batch_size, 20, 12, 12),
 filter_shape=(40, 20, 5, 5),
 poolsize=(2, 2)),
 FullyConnectedLayer(n_in=40*4*4, n_out=100),
 SoftmaxLayer(n_in=100, n_out=10)], mini_batch_size)
>>> net.SGD(training_data, 60, mini_batch_size, 0.1,
 validation_data, test_data)

Once again, we get an improvement: we're now at percent
classification accuracy!

There's two natural questions to ask at this point. The first question
is: what does it even mean to apply a second convolutional-pooling
layer? In fact, you can think of the second convolutional-pooling
layer as having as input "images", whose "pixels" represent
the presence (or absence) of particular localized features in the
original input image. So you can think of this layer as having as
input a version of the original input image. That version is

98.78

5 × 5
2 × 2

99.06

12 × 12

21.6.18, 22(00Neural networks and deep learning

Page 20 of 70http://neuralnetworksanddeeplearning.com/chap6.html

abstracted and condensed, but still has a lot of spatial structure,
and so it makes sense to use a second convolutional-pooling layer.

That's a satisfying point of view, but gives rise to a second question.
The output from the previous layer involves separate feature
maps, and so there are inputs to the second
convolutional-pooling layer. It's as though we've got separate
images input to the convolutional-pooling layer, not a single image,
as was the case for the first convolutional-pooling layer. How
should neurons in the second convolutional-pooling layer respond
to these multiple input images? In fact, we'll allow each neuron in
this layer to learn from all input neurons in its local
receptive field. More informally: the feature detectors in the second
convolutional-pooling layer have access to all the features from the
previous layer, but only within their particular local receptive field*.

Problem

Using the tanh activation function Several times earlier in
the book I've mentioned arguments that the tanh function may
be a better activation function than the sigmoid function.
We've never acted on those suggestions, since we were already
making plenty of progress with the sigmoid. But now let's try
some experiments with tanh as our activation function. Try
training the network with tanh activations in the convolutional
and fully-connected layers*. Begin with the same hyper-
parameters as for the sigmoid network, but train for epochs
instead of . How well does your network perform? What if
you continue out to epochs? Try plotting the per-epoch
validation accuracies for both tanh- and sigmoid-based
networks, all the way out to epochs. If your results are
similar to mine, you'll find the tanh networks train a little
faster, but the final accuracies are very similar. Can you explain

20
20 × 12 × 12

20

20 × 5 × 5

*This issue would have arisen in the first layer if
the input images were in color. In that case we'd
have 3 input features for each pixel,
corresponding to red, green and blue channels in
the input image. So we'd allow the feature
detectors to have access to all color information,
but only within a given local receptive field.

*Note that you can pass activation_fn=tanh
as a parameter to the ConvPoolLayer and
FullyConnectedLayer classes.20

60
60

60

http://neuralnetworksanddeeplearning.com/chap3.html#other_models_of_artificial_neuron

21.6.18, 22(00Neural networks and deep learning

Page 21 of 70http://neuralnetworksanddeeplearning.com/chap6.html

why the tanh network might train faster? Can you get a similar
training speed with the sigmoid, perhaps by changing the
learning rate, or doing some rescaling*? Try a half-dozen
iterations on the learning hyper-parameters or network
architecture, searching for ways that tanh may be superior to
the sigmoid. Note: This is an open-ended problem. Personally,
I did not find much advantage in switching to tanh, although I
haven't experimented exhaustively, and perhaps you may find
a way. In any case, in a moment we will find an advantage in
switching to the rectified linear activation function, and so we
won't go any deeper into the use of tanh.

Using rectified linear units: The network we've developed at
this point is actually a variant of one of the networks used in the
seminal 1998 paper* introducing the MNIST problem, a network
known as LeNet-5. It's a good foundation for further
experimentation, and for building up understanding and intuition.
In particular, there are many ways we can vary the network in an
attempt to improve our results.

As a beginning, let's change our neurons so that instead of using a
sigmoid activation function, we use rectified linear units. That is,
we'll use the activation function . We'll train for
epochs, with a learning rate of . I also found that it helps a
little to use some l2 regularization, with regularization parameter

:

>>> from network3 import ReLU
>>> net = Network([
 ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28),
 filter_shape=(20, 1, 5, 5),
 poolsize=(2, 2),
 activation_fn=ReLU),
 ConvPoolLayer(image_shape=(mini_batch_size, 20, 12, 12),
 filter_shape=(40, 20, 5, 5),
 poolsize=(2, 2),
 activation_fn=ReLU),
 FullyConnectedLayer(n_in=40*4*4, n_out=100, activation_fn=ReLU),
 SoftmaxLayer(n_in=100, n_out=10)], mini_batch_size)

*You may perhaps find inspiration in recalling
that .σ(z) = (1 + tanh(z/2))/2

*"Gradient-based learning applied to document
recognition", by Yann LeCun, Léon Bottou,
Yoshua Bengio, and Patrick Haffner (1998).
There are many differences of detail, but broadly
speaking our network is quite similar to the
networks described in the paper.

f (z) ≡ max(0, z) 60
η = 0.03

λ = 0.1

http://neuralnetworksanddeeplearning.com/chap3.html#other_models_of_artificial_neuron
http://neuralnetworksanddeeplearning.com/chap3.html#overfitting_and_regularization
http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf

21.6.18, 22(00Neural networks and deep learning

Page 22 of 70http://neuralnetworksanddeeplearning.com/chap6.html

>>> net.SGD(training_data, 60, mini_batch_size, 0.03,
 validation_data, test_data, lmbda=0.1)

I obtained a classification accuracy of percent. It's a modest
improvement over the sigmoid results (). However, across all
my experiments I found that networks based on rectified linear
units consistently outperformed networks based on sigmoid
activation functions. There appears to be a real gain in moving to
rectified linear units for this problem.

What makes the rectified linear activation function better than the
sigmoid or tanh functions? At present, we have a poor
understanding of the answer to this question. Indeed, rectified
linear units have only begun to be widely used in the past few years.
The reason for that recent adoption is empirical: a few people tried
rectified linear units, often on the basis of hunches or heuristic
arguments*. They got good results classifying benchmark data sets,
and the practice has spread. In an ideal world we'd have a theory
telling us which activation function to pick for which application.
But at present we're a long way from such a world. I should not be
at all surprised if further major improvements can be obtained by
an even better choice of activation function. And I also expect that
in coming decades a powerful theory of activation functions will be
developed. Today, we still have to rely on poorly understood rules of
thumb and experience.

Expanding the training data: Another way we may hope to
improve our results is by algorithmically expanding the training
data. A simple way of expanding the training data is to displace
each training image by a single pixel, either up one pixel, down one
pixel, left one pixel, or right one pixel. We can do this by running
the program expand_mnist.py from the shell prompt*:

$ python expand_mnist.py

99.23
99.06

*A common justification is that doesn't
saturate in the limit of large , unlike sigmoid
neurons, and this helps rectified linear units
continue learning. The argument is fine, as far it
goes, but it's hardly a detailed justification, more
of a just-so story. Note that we discussed the
problems with saturation back in Chapter 2.

max(0, z)
z

*The code for expand_mnist.py is available
here.

http://neuralnetworksanddeeplearning.com/chap2.html#saturation
https://github.com/mnielsen/neural-networks-and-deep-learning/blob/master/src/expand_mnist.py

21.6.18, 22(00Neural networks and deep learning

Page 23 of 70http://neuralnetworksanddeeplearning.com/chap6.html

Running this program takes the MNIST training images, and
prepares an expanded training set, with training images.
We can then use those training images to train our network. We'll
use the same network as above, with rectified linear units. In my
initial experiments I reduced the number of training epochs - this
made sense, since we're training with times as much data. But, in
fact, expanding the data turned out to considerably reduce the
effect of overfitting. And so, after some experimentation, I
eventually went back to training for epochs. In any case, let's
train:

>>> expanded_training_data, _, _ = network3.load_data_shared(
 "../data/mnist_expanded.pkl.gz")
>>> net = Network([
 ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28),
 filter_shape=(20, 1, 5, 5),
 poolsize=(2, 2),
 activation_fn=ReLU),
 ConvPoolLayer(image_shape=(mini_batch_size, 20, 12, 12),
 filter_shape=(40, 20, 5, 5),
 poolsize=(2, 2),
 activation_fn=ReLU),
 FullyConnectedLayer(n_in=40*4*4, n_out=100, activation_fn=ReLU),
 SoftmaxLayer(n_in=100, n_out=10)], mini_batch_size)
>>> net.SGD(expanded_training_data, 60, mini_batch_size, 0.03,
 validation_data, test_data, lmbda=0.1)

Using the expanded training data I obtained a percent
training accuracy. So this almost trivial change gives a substantial
improvement in classification accuracy. Indeed, as we discussed
earlier this idea of algorithmically expanding the data can be taken
further. Just to remind you of the flavour of some of the results in
that earlier discussion: in 2003 Simard, Steinkraus and Platt*
improved their MNIST performance to percent using a neural
network otherwise very similar to ours, using two convolutional-
pooling layers, followed by a hidden fully-connected layer with
neurons. There were a few differences of detail in their architecture
- they didn't have the advantage of using rectified linear units, for
instance - but the key to their improved performance was

50, 000
250, 000

5

60

99.37

*Best Practices for Convolutional Neural
Networks Applied to Visual Document Analysis,
by Patrice Simard, Dave Steinkraus, and John
Platt (2003).

99.6

100

http://neuralnetworksanddeeplearning.com/chap3.html#other_techniques_for_regularization
http://dx.doi.org/10.1109/ICDAR.2003.1227801

21.6.18, 22(00Neural networks and deep learning

Page 24 of 70http://neuralnetworksanddeeplearning.com/chap6.html

expanding the training data. They did this by rotating, translating,
and skewing the MNIST training images. They also developed a
process of "elastic distortion", a way of emulating the random
oscillations hand muscles undergo when a person is writing. By
combining all these processes they substantially increased the
effective size of their training data, and that's how they achieved

 percent accuracy.

Problem

The idea of convolutional layers is to behave in an invariant
way across images. It may seem surprising, then, that our
network can learn more when all we've done is translate the
input data. Can you explain why this is actually quite
reasonable?

Inserting an extra fully-connected layer: Can we do even
better? One possibility is to use exactly the same procedure as
above, but to expand the size of the fully-connected layer. I tried
with and neurons, obtaining results of and
percent, respectively. That's interesting, but not really a convincing
win over the earlier result (percent).

What about adding an extra fully-connected layer? Let's try
inserting an extra fully-connected layer, so that we have two -
hidden neuron fully-connected layers:

>>> net = Network([
 ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28),
 filter_shape=(20, 1, 5, 5),
 poolsize=(2, 2),
 activation_fn=ReLU),
 ConvPoolLayer(image_shape=(mini_batch_size, 20, 12, 12),
 filter_shape=(40, 20, 5, 5),
 poolsize=(2, 2),
 activation_fn=ReLU),
 FullyConnectedLayer(n_in=40*4*4, n_out=100, activation_fn=ReLU),
 FullyConnectedLayer(n_in=100, n_out=100, activation_fn=ReLU),
 SoftmaxLayer(n_in=100, n_out=10)], mini_batch_size)
>>> net.SGD(expanded_training_data, 60, mini_batch_size, 0.03,

99.6

300 1, 000 99.46 99.43

99.37

100

21.6.18, 22(00Neural networks and deep learning

Page 25 of 70http://neuralnetworksanddeeplearning.com/chap6.html

 validation_data, test_data, lmbda=0.1)

Doing this, I obtained a test accuracy of percent. Again, the
expanded net isn't helping so much. Running similar experiments
with fully-connected layers containing and neurons yields
results of and percent. That's encouraging, but still falls
short of a really decisive win.

What's going on here? Is it that the expanded or extra fully-
connected layers really don't help with MNIST? Or might it be that
our network has the capacity to do better, but we're going about
learning the wrong way? For instance, maybe we could use stronger
regularization techniques to reduce the tendency to overfit. One
possibility is the dropout technique introduced back in Chapter 3.
Recall that the basic idea of dropout is to remove individual
activations at random while training the network. This makes the
model more robust to the loss of individual pieces of evidence, and
thus less likely to rely on particular idiosyncracies of the training
data. Let's try applying dropout to the final fully-connected layers:

>>> net = Network([
 ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28),
 filter_shape=(20, 1, 5, 5),
 poolsize=(2, 2),
 activation_fn=ReLU),
 ConvPoolLayer(image_shape=(mini_batch_size, 20, 12, 12),
 filter_shape=(40, 20, 5, 5),
 poolsize=(2, 2),
 activation_fn=ReLU),
 FullyConnectedLayer(
 n_in=40*4*4, n_out=1000, activation_fn=ReLU, p_dropout=0.5),
 FullyConnectedLayer(
 n_in=1000, n_out=1000, activation_fn=ReLU, p_dropout=0.5),
 SoftmaxLayer(n_in=1000, n_out=10, p_dropout=0.5)],
 mini_batch_size)
>>> net.SGD(expanded_training_data, 40, mini_batch_size, 0.03,
 validation_data, test_data)

Using this, we obtain an accuracy of percent, which is a
substantial improvement over our earlier results, especially our
main benchmark, the network with hidden neurons, where we

99.43

300 1, 000
99.48 99.47

99.60

100

http://neuralnetworksanddeeplearning.com/chap3.html#other_techniques_for_regularization

21.6.18, 22(00Neural networks and deep learning

Page 26 of 70http://neuralnetworksanddeeplearning.com/chap6.html

achieved percent.

There are two changes worth noting.

First, I reduced the number of training epochs to : dropout
reduced overfitting, and so we learned faster.

Second, the fully-connected hidden layers have neurons, not
the used earlier. Of course, dropout effectively omits many of
the neurons while training, so some expansion is to be expected. In
fact, I tried experiments with both and hidden neurons,
and obtained (very slightly) better validation performance with

 hidden neurons.

Using an ensemble of networks: An easy way to improve
performance still further is to create several neural networks, and
then get them to vote to determine the best classification. Suppose,
for example, that we trained different neural networks using the
prescription above, with each achieving accuracies near to
percent. Even though the networks would all have similar
accuracies, they might well make different errors, due to the
different random initializations. It's plausible that taking a vote
amongst our networks might yield a classification better than any
individual network.

This sounds too good to be true, but this kind of ensembling is a
common trick with both neural networks and other machine
learning techniques. And it does in fact yield further improvements:
we end up with percent accuracy. In other words, our
ensemble of networks classifies all but of the test images
correctly.

The remaining errors in the test set are shown below. The label in
the top right is the correct classification, according to the MNIST
data, while in the bottom right is the label output by our ensemble

99.37

40

1, 000
100

300 1, 000

1, 000

5
99.6

5

99.67
33 10, 000

21.6.18, 22(00Neural networks and deep learning

Page 27 of 70http://neuralnetworksanddeeplearning.com/chap6.html

of nets:

It's worth looking through these in detail. The first two digits, a 6
and a 5, are genuine errors by our ensemble. However, they're also
understandable errors, the kind a human could plausibly make.
That 6 really does look a lot like a 0, and the 5 looks a lot like a 3.
The third image, supposedly an 8, actually looks to me more like a
9. So I'm siding with the network ensemble here: I think it's done a
better job than whoever originally drew the digit. On the other
hand, the fourth image, the 6, really does seem to be classified badly
by our networks.

And so on. In most cases our networks' choices seem at least
plausible, and in some cases they've done a better job classifying
than the original person did writing the digit. Overall, our networks
offer exceptional performance, especially when you consider that
they correctly classified 9,967 images which aren't shown. In that
context, the few clear errors here seem quite understandable. Even
a careful human makes the occasional mistake. And so I expect that
only an extremely careful and methodical human would do much

21.6.18, 22(00Neural networks and deep learning

Page 28 of 70http://neuralnetworksanddeeplearning.com/chap6.html

better. Our network is getting near to human performance.

Why we only applied dropout to the fully-connected
layers: If you look carefully at the code above, you'll notice that we
applied dropout only to the fully-connected section of the network,
not to the convolutional layers. In principle we could apply a similar
procedure to the convolutional layers. But, in fact, there's no need:
the convolutional layers have considerable inbuilt resistance to
overfitting. The reason is that the shared weights mean that
convolutional filters are forced to learn from across the entire
image. This makes them less likely to pick up on local idiosyncracies
in the training data. And so there is less need to apply other
regularizers, such as dropout.

Going further: It's possible to improve performance on MNIST
still further. Rodrigo Benenson has compiled an informative
summary page, showing progress over the years, with links to
papers. Many of these papers use deep convolutional networks
along lines similar to the networks we've been using. If you dig
through the papers you'll find many interesting techniques, and you
may enjoy implementing some of them. If you do so it's wise to start
implementation with a simple network that can be trained quickly,
which will help you more rapidly understand what is going on.

For the most part, I won't try to survey this recent work. But I can't
resist making one exception. It's a 2010 paper by Cireșan, Meier,
Gambardella, and Schmidhuber*. What I like about this paper is
how simple it is. The network is a many-layer neural network, using
only fully-connected layers (no convolutions). Their most successful
network had hidden layers containing , , , ,
and neurons, respectively. They used ideas similar to Simard et
al to expand their training data. But apart from that, they used few
other tricks, including no convolutional layers: it was a plain,
vanilla network, of the kind that, with enough patience, could have

*Deep, Big, Simple Neural Nets Excel on
Handwritten Digit Recognition, by Dan Claudiu
Cireșan, Ueli Meier, Luca Maria Gambardella,
and Jürgen Schmidhuber (2010).

2, 500 2, 000 1, 500 1, 000
500

http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
http://arxiv.org/abs/1003.0358

21.6.18, 22(00Neural networks and deep learning

Page 29 of 70http://neuralnetworksanddeeplearning.com/chap6.html

been trained in the 1980s (if the MNIST data set had existed), given
enough computing power. They achieved a classification accuracy of

 percent, more or less the same as ours. The key was to use a
very large, very deep network, and to use a GPU to speed up
training. This let them train for many epochs. They also took
advantage of their long training times to gradually decrease the
learning rate from to . It's a fun exercise to try to match
these results using an architecture like theirs.

Why are we able to train? We saw in the last chapter that there
are fundamental obstructions to training in deep, many-layer
neural networks. In particular, we saw that the gradient tends to be
quite unstable: as we move from the output layer to earlier layers
the gradient tends to either vanish (the vanishing gradient problem)
or explode (the exploding gradient problem). Since the gradient is
the signal we use to train, this causes problems.

How have we avoided those results?

Of course, the answer is that we haven't avoided these results.
Instead, we've done a few things that help us proceed anyway. In
particular: (1) Using convolutional layers greatly reduces the
number of parameters in those layers, making the learning problem
much easier; (2) Using more powerful regularization techniques
(notably dropout and convolutional layers) to reduce overfitting,
which is otherwise more of a problem in more complex networks;
(3) Using rectified linear units instead of sigmoid neurons, to speed
up training - empirically, often by a factor of - ; (4) Using GPUs
and being willing to train for a long period of time. In particular, in
our final experiments we trained for epochs using a data set
times larger than the raw MNIST training data. Earlier in the book
we mostly trained for epochs using just the raw training data.
Combining factors (3) and (4) it's as though we've trained a factor
perhaps times longer than before.

99.65

10− 3 10− 6

3 5

40 5

30

30

http://neuralnetworksanddeeplearning.com/chap5.html

21.6.18, 22(00Neural networks and deep learning

Page 30 of 70http://neuralnetworksanddeeplearning.com/chap6.html

Your response may be "Is that it? Is that all we had to do to train
deep networks? What's all the fuss about?"

Of course, we've used other ideas, too: making use of sufficiently
large data sets (to help avoid overfitting); using the right cost
function (to avoid a learning slowdown); using good weight
initializations (also to avoid a learning slowdown, due to neuron
saturation); algorithmically expanding the training data. We
discussed these and other ideas in earlier chapters, and have for the
most part been able to reuse these ideas with little comment in this
chapter.

With that said, this really is a rather simple set of ideas. Simple, but
powerful, when used in concert. Getting started with deep learning
has turned out to be pretty easy!

How deep are these networks, anyway? Counting the
convolutional-pooling layers as single layers, our final architecture
has hidden layers. Does such a network really deserve to be called
a deep network? Of course, hidden layers is many more than in
the shallow networks we studied earlier. Most of those networks
only had a single hidden layer, or occasionally hidden layers. On
the other hand, as of 2015 state-of-the-art deep networks
sometimes have dozens of hidden layers. I've occasionally heard
people adopt a deeper-than-thou attitude, holding that if you're not
keeping-up-with-the-Joneses in terms of number of hidden layers,
then you're not really doing deep learning. I'm not sympathetic to
this attitude, in part because it makes the definition of deep
learning into something which depends upon the result-of-the-
moment. The real breakthrough in deep learning was to realize that
it's practical to go beyond the shallow - and -hidden layer
networks that dominated work until the mid-2000s. That really was
a significant breakthrough, opening up the exploration of much
more expressive models. But beyond that, the number of layers is

4
4

2

1 2

http://neuralnetworksanddeeplearning.com/chap3.html#the_cross%5C-entropy_cost_function
http://neuralnetworksanddeeplearning.com/chap3.html#weight_initialization
http://neuralnetworksanddeeplearning.com/chap3.html#other_techniques_for_regularization

21.6.18, 22(00Neural networks and deep learning

Page 31 of 70http://neuralnetworksanddeeplearning.com/chap6.html

not of primary fundamental interest. Rather, the use of deeper
networks is a tool to use to help achieve other goals - like better
classification accuracies.

A word on procedure: In this section, we've smoothly moved
from single hidden-layer shallow networks to many-layer
convolutional networks. It all seemed so easy! We make a change
and, for the most part, we get an improvement. If you start
experimenting, I can guarantee things won't always be so smooth.
The reason is that I've presented a cleaned-up narrative, omitting
many experiments - including many failed experiments. This
cleaned-up narrative will hopefully help you get clear on the basic
ideas. But it also runs the risk of conveying an incomplete
impression. Getting a good, working network can involve a lot of
trial and error, and occasional frustration. In practice, you should
expect to engage in quite a bit of experimentation. To speed that
process up you may find it helpful to revisit Chapter 3's discussion
of how to choose a neural network's hyper-parameters, and perhaps
also to look at some of the further reading suggested in that section.

The code for our convolutional
networks
Alright, let's take a look at the code for our program, network3.py.
Structurally, it's similar to network2.py, the program we developed
in Chapter 3, although the details differ, due to the use of Theano.
We'll start by looking at the FullyConnectedLayer class, which is
similar to the layers studied earlier in the book. Here's the code
(discussion below)*:

class FullyConnectedLayer(object):

 def __init__(self, n_in, n_out, activation_fn=sigmoid, p_dropout=0.0):
 self.n_in = n_in
 self.n_out = n_out
 self.activation_fn = activation_fn

*Note added November 2016: several readers
have noted that in the line initializing self.w, I
set scale=np.sqrt(1.0/n_out), when the
arguments of Chapter 3 suggest a better
initialization may be
scale=np.sqrt(1.0/n_in). This was simply
a mistake on my part. In an ideal world I'd rerun
all the examples in this chapter with the correct
code. Still, I've moved on to other projects, so am

http://neuralnetworksanddeeplearning.com/chap3.html#how_to_choose_a_neural_network's_hyper-parameters
http://neuralnetworksanddeeplearning.com/chap3.html

21.6.18, 22(00Neural networks and deep learning

Page 32 of 70http://neuralnetworksanddeeplearning.com/chap6.html

 self.p_dropout = p_dropout
 # Initialize weights and biases
 self.w = theano.shared(
 np.asarray(
 np.random.normal(
 loc=0.0, scale=np.sqrt(1.0/n_out), size=(n_in, n_out)),
 dtype=theano.config.floatX),
 name='w', borrow=True)
 self.b = theano.shared(
 np.asarray(np.random.normal(loc=0.0, scale=1.0, size=(n_out,)),
 dtype=theano.config.floatX),
 name='b', borrow=True)
 self.params = [self.w, self.b]

 def set_inpt(self, inpt, inpt_dropout, mini_batch_size):
 self.inpt = inpt.reshape((mini_batch_size, self.n_in))
 self.output = self.activation_fn(
 (1-self.p_dropout)*T.dot(self.inpt, self.w) + self.b)
 self.y_out = T.argmax(self.output, axis=1)
 self.inpt_dropout = dropout_layer(
 inpt_dropout.reshape((mini_batch_size, self.n_in)), self.p_dropout)
 self.output_dropout = self.activation_fn(
 T.dot(self.inpt_dropout, self.w) + self.b)

 def accuracy(self, y):
 "Return the accuracy for the mini-batch."
 return T.mean(T.eq(y, self.y_out))

Much of the __init__ method is self-explanatory, but a few remarks
may help clarify the code. As per usual, we randomly initialize the
weights and biases as normal random variables with suitable
standard deviations. The lines doing this look a little forbidding.
However, most of the complication is just loading the weights and
biases into what Theano calls shared variables. This ensures that
these variables can be processed on the GPU, if one is available. We
won't get too much into the details of this. If you're interested, you
can dig into the Theano documentation. Note also that this weight
and bias initialization is designed for the sigmoid activation
function (as discussed earlier). Ideally, we'd initialize the weights
and biases somewhat differently for activation functions such as the
tanh and rectified linear function. This is discussed further in
problems below. The __init__ method finishes with self.params =
[self.w, self.b]. This is a handy way to bundle up all the learnable
parameters associated to the layer. Later on, the Network.SGD

going to let the error go.

http://deeplearning.net/software/theano/index.html
http://neuralnetworksanddeeplearning.com/chap3.html#weight_initialization

21.6.18, 22(00Neural networks and deep learning

Page 33 of 70http://neuralnetworksanddeeplearning.com/chap6.html

method will use params attributes to figure out what variables in a
Network instance can learn.

The set_inpt method is used to set the input to the layer, and to
compute the corresponding output. I use the name inpt rather than
input because input is a built-in function in Python, and messing
with built-ins tends to cause unpredictable behavior and difficult-
to-diagnose bugs. Note that we actually set the input in two
separate ways: as self.inpt and self.inpt_dropout. This is done
because during training we may want to use dropout. If that's the
case then we want to remove a fraction self.p_dropout of the
neurons. That's what the function dropout_layer in the second-last
line of the set_inpt method is doing. So self.inpt_dropout and
self.output_dropout are used during training, while self.inpt and
self.output are used for all other purposes, e.g., evaluating
accuracy on the validation and test data.

The ConvPoolLayer and SoftmaxLayer class definitions are similar to
FullyConnectedLayer. Indeed, they're so close that I won't excerpt
the code here. If you're interested you can look at the full listing for
network3.py, later in this section.

However, a couple of minor differences of detail are worth
mentioning. Most obviously, in both ConvPoolLayer and
SoftmaxLayer we compute the output activations in the way
appropriate to that layer type. Fortunately, Theano makes that easy,
providing built-in operations to compute convolutions, max-
pooling, and the softmax function.

Less obviously, when we introduced the softmax layer, we never
discussed how to initialize the weights and biases. Elsewhere we've
argued that for sigmoid layers we should initialize the weights using
suitably parameterized normal random variables. But that heuristic
argument was specific to sigmoid neurons (and, with some

http://neuralnetworksanddeeplearning.com/chap3.html#softmax

21.6.18, 22(00Neural networks and deep learning

Page 34 of 70http://neuralnetworksanddeeplearning.com/chap6.html

amendment, to tanh neurons). However, there's no particular
reason the argument should apply to softmax layers. So there's no a
priori reason to apply that initialization again. Rather than do that,
I shall initialize all the weights and biases to be . This is a rather ad
hoc procedure, but works well enough in practice.

Okay, we've looked at all the layer classes. What about the Network
class? Let's start by looking at the __init__ method:

class Network(object):

 def __init__(self, layers, mini_batch_size):
 """Takes a list of `layers`, describing the network architecture, and
 a value for the `mini_batch_size` to be used during training

 by stochastic gradient descent.

 """

 self.layers = layers
 self.mini_batch_size = mini_batch_size
 self.params = [param for layer in self.layers for param in layer.params]
 self.x = T.matrix("x")
 self.y = T.ivector("y")
 init_layer = self.layers[0]
 init_layer.set_inpt(self.x, self.x, self.mini_batch_size)
 for j in xrange(1, len(self.layers)):
 prev_layer, layer = self.layers[j-1], self.layers[j]
 layer.set_inpt(
 prev_layer.output, prev_layer.output_dropout, self.mini_batch_size)
 self.output = self.layers[-1].output
 self.output_dropout = self.layers[-1].output_dropout

Most of this is self-explanatory, or nearly so. The line self.params =
[param for layer in ...] bundles up the parameters for each layer
into a single list. As anticipated above, the Network.SGD method will
use self.params to figure out what variables in the Network can
learn. The lines self.x = T.matrix("x") and self.y =
T.ivector("y") define Theano symbolic variables named x and y.
These will be used to represent the input and desired output from
the network.

Now, this isn't a Theano tutorial, and so we won't get too deeply
into what it means that these are symbolic variables*. But the rough
idea is that these represent mathematical variables, not explicit

0

*The Theano documentation provides a good
introduction to Theano. And if you get stuck, you
may find it helpful to look at one of the other

http://deeplearning.net/software/theano/index.html

21.6.18, 22(00Neural networks and deep learning

Page 35 of 70http://neuralnetworksanddeeplearning.com/chap6.html

values. We can do all the usual things one would do with such
variables: add, subtract, and multiply them, apply functions, and so
on. Indeed, Theano provides many ways of manipulating such
symbolic variables, doing things like convolutions, max-pooling,
and so on. But the big win is the ability to do fast symbolic
differentiation, using a very general form of the backpropagation
algorithm. This is extremely useful for applying stochastic gradient
descent to a wide variety of network architectures. In particular, the
next few lines of code define symbolic outputs from the network.
We start by setting the input to the initial layer, with the line

 init_layer.set_inpt(self.x, self.x, self.mini_batch_size)

Note that the inputs are set one mini-batch at a time, which is why
the mini-batch size is there. Note also that we pass the input self.x
in twice: this is because we may use the network in two different
ways (with or without dropout). The for loop then propagates the
symbolic variable self.x forward through the layers of the Network.
This allows us to define the final output and output_dropout
attributes, which symbolically represent the output from the
Network.

Now that we've understood how a Network is initialized, let's look at
how it is trained, using the SGD method. The code looks lengthy, but
its structure is actually rather simple. Explanatory comments after
the code.

 def SGD(self, training_data, epochs, mini_batch_size, eta,
 validation_data, test_data, lmbda=0.0):
 """Train the network using mini-batch stochastic gradient descent."""
 training_x, training_y = training_data
 validation_x, validation_y = validation_data
 test_x, test_y = test_data

 # compute number of minibatches for training, validation and testing
 num_training_batches = size(training_data)/mini_batch_size
 num_validation_batches = size(validation_data)/mini_batch_size
 num_test_batches = size(test_data)/mini_batch_size

 # define the (regularized) cost function, symbolic gradients, and updates

tutorials available online. For instance, this
tutorial covers many basics.

http://nbviewer.ipython.org/github/craffel/theano-tutorial/blob/master/Theano%20Tutorial.ipynb

21.6.18, 22(00Neural networks and deep learning

Page 36 of 70http://neuralnetworksanddeeplearning.com/chap6.html

 l2_norm_squared = sum([(layer.w**2).sum() for layer in self.layers])
 cost = self.layers[-1].cost(self)+\
 0.5*lmbda*l2_norm_squared/num_training_batches
 grads = T.grad(cost, self.params)
 updates = [(param, param-eta*grad)
 for param, grad in zip(self.params, grads)]

 # define functions to train a mini-batch, and to compute the
 # accuracy in validation and test mini-batches.
 i = T.lscalar() # mini-batch index
 train_mb = theano.function(
 [i], cost, updates=updates,
 givens={
 self.x:
 training_x[i*self.mini_batch_size: (i+1)*self.mini_batch_size],
 self.y:
 training_y[i*self.mini_batch_size: (i+1)*self.mini_batch_size]
 })
 validate_mb_accuracy = theano.function(
 [i], self.layers[-1].accuracy(self.y),
 givens={
 self.x:
 validation_x[i*self.mini_batch_size: (i+1)*self.mini_batch_size],
 self.y:
 validation_y[i*self.mini_batch_size: (i+1)*self.mini_batch_size]
 })
 test_mb_accuracy = theano.function(
 [i], self.layers[-1].accuracy(self.y),
 givens={
 self.x:
 test_x[i*self.mini_batch_size: (i+1)*self.mini_batch_size],
 self.y:
 test_y[i*self.mini_batch_size: (i+1)*self.mini_batch_size]
 })
 self.test_mb_predictions = theano.function(
 [i], self.layers[-1].y_out,
 givens={
 self.x:
 test_x[i*self.mini_batch_size: (i+1)*self.mini_batch_size]
 })
 # Do the actual training
 best_validation_accuracy = 0.0
 for epoch in xrange(epochs):
 for minibatch_index in xrange(num_training_batches):
 iteration = num_training_batches*epoch+minibatch_index
 if iteration
 print("Training mini-batch number {0}".format(iteration))
 cost_ij = train_mb(minibatch_index)
 if (iteration+1)
 validation_accuracy = np.mean(
 [validate_mb_accuracy(j) for j in xrange(num_validation_batches)])
 print("Epoch {0}: validation accuracy {1:.2
 epoch, validation_accuracy))
 if validation_accuracy >= best_validation_accuracy:
 print("This is the best validation accuracy to date.")

21.6.18, 22(00Neural networks and deep learning

Page 37 of 70http://neuralnetworksanddeeplearning.com/chap6.html

 best_validation_accuracy = validation_accuracy
 best_iteration = iteration
 if test_data:
 test_accuracy = np.mean(
 [test_mb_accuracy(j) for j in xrange(num_test_batches)])
 print('The corresponding test accuracy is {0:.2
 test_accuracy))
 print("Finished training network.")
 print("Best validation accuracy of {0:.2
 best_validation_accuracy, best_iteration))
 print("Corresponding test accuracy of {0:.2

The first few lines are straightforward, separating the datasets into
 and components, and computing the number of mini-batches

used in each dataset. The next few lines are more interesting, and
show some of what makes Theano fun to work with. Let's explicitly
excerpt the lines here:

 # define the (regularized) cost function, symbolic gradients, and updates
 l2_norm_squared = sum([(layer.w**2).sum() for layer in self.layers])
 cost = self.layers[-1].cost(self)+\
 0.5*lmbda*l2_norm_squared/num_training_batches
 grads = T.grad(cost, self.params)
 updates = [(param, param-eta*grad)
 for param, grad in zip(self.params, grads)]

In these lines we symbolically set up the regularized log-likelihood
cost function, compute the corresponding derivatives in the
gradient function, as well as the corresponding parameter updates.
Theano lets us achieve all of this in just these few lines. The only
thing hidden is that computing the cost involves a call to the cost
method for the output layer; that code is elsewhere in network3.py.
But that code is short and simple, anyway. With all these things
defined, the stage is set to define the train_mb function, a Theano
symbolic function which uses the updates to update the Network
parameters, given a mini-batch index. Similarly,
validate_mb_accuracy and test_mb_accuracy compute the accuracy
of the Network on any given mini-batch of validation or test data. By
averaging over these functions, we will be able to compute
accuracies on the entire validation and test data sets.

x y

21.6.18, 22(00Neural networks and deep learning

Page 38 of 70http://neuralnetworksanddeeplearning.com/chap6.html

The remainder of the SGD method is self-explanatory - we simply
iterate over the epochs, repeatedly training the network on mini-
batches of training data, and computing the validation and test
accuracies.

Okay, we've now understood the most important pieces of code in
network3.py. Let's take a brief look at the entire program. You don't
need to read through this in detail, but you may enjoy glancing over
it, and perhaps diving down into any pieces that strike your fancy.
The best way to really understand it is, of course, by modifying it,
adding extra features, or refactoring anything you think could be
done more elegantly. After the code, there are some problems which
contain a few starter suggestions for things to do. Here's the code*:

"""network3.py

~~~~~~~~~~~~~~

A Theano-based program for training and running simple neural

networks.

Supports several layer types (fully connected, convolutional, max

pooling, softmax), and activation functions (sigmoid, tanh, and

rectified linear units, with more easily added).

When run on a CPU, this program is much faster than network.py and

network2.py.  However, unlike network.py and network2.py it can also

be run on a GPU, which makes it faster still.

Because the code is based on Theano, the code is different in many

ways from network.py and network2.py.  However, where possible I have

tried to maintain consistency with the earlier programs.  In

particular, the API is similar to network2.py.  Note that I have

focused on making the code simple, easily readable, and easily

modifiable.  It is not optimized, and omits many desirable features.

This program incorporates ideas from the Theano documentation on

convolutional neural nets (notably,

http://deeplearning.net/tutorial/lenet.html ), from Misha Denil's

implementation of dropout (https://github.com/mdenil/dropout ), and

from Chris Olah (http://colah.github.io ).

Written for Theano 0.6 and 0.7, needs some changes for more recent

versions of Theano.

"""

#### Libraries

*Using Theano on a GPU can be a little tricky. In
particular, it's easy to make the mistake of
pulling data off the GPU, which can slow things
down a lot. I've tried to avoid this. With that
said, this code can certainly be sped up quite a
bit further with careful optimization of Theano's
configuration. See the Theano documentation
for more details.



21.6.18, 22(00Neural networks and deep learning

Page 39 of 70http://neuralnetworksanddeeplearning.com/chap6.html

# Standard library

import cPickle
import gzip

# Third-party libraries

import numpy as np
import theano
import theano.tensor as T
from theano.tensor.nnet import conv
from theano.tensor.nnet import softmax
from theano.tensor import shared_randomstreams
from theano.tensor.signal import downsample

# Activation functions for neurons

def linear(z): return z
def ReLU(z): return T.maximum(0.0, z)
from theano.tensor.nnet import sigmoid
from theano.tensor import tanh

#### Constants

GPU = True
if GPU:
    print "Trying to run under a GPU.  If this is not desired, then modify "+\
        "network3.py\nto set the GPU flag to False."
    try: theano.config.device = 'gpu'
    except: pass # it's already set
    theano.config.floatX = 'float32'
else:
    print "Running with a CPU.  If this is not desired, then the modify "+\
        "network3.py to set\nthe GPU flag to True."

#### Load the MNIST data

def load_data_shared(filename="../data/mnist.pkl.gz"):
    f = gzip.open(filename, 'rb')
    training_data, validation_data, test_data = cPickle.load(f)
    f.close()
    def shared(data):
        """Place the data into shared variables.  This allows Theano to copy
        the data to the GPU, if one is available.

        """

        shared_x = theano.shared(
            np.asarray(data[0], dtype=theano.config.floatX), borrow=True)
        shared_y = theano.shared(
            np.asarray(data[1], dtype=theano.config.floatX), borrow=True)
        return shared_x, T.cast(shared_y, "int32")
    return [shared(training_data), shared(validation_data), shared(test_data)]

#### Main class used to construct and train networks

class Network(object):

    def __init__(self, layers, mini_batch_size):
        """Takes a list of `layers`, describing the network architecture, and
        a value for the `mini_batch_size` to be used during training



21.6.18, 22(00Neural networks and deep learning

Page 40 of 70http://neuralnetworksanddeeplearning.com/chap6.html

        by stochastic gradient descent.

        """

        self.layers = layers
        self.mini_batch_size = mini_batch_size
        self.params = [param for layer in self.layers for param in layer.params]
        self.x = T.matrix("x")
        self.y = T.ivector("y")
        init_layer = self.layers[0]
        init_layer.set_inpt(self.x, self.x, self.mini_batch_size)
        for j in xrange(1, len(self.layers)):
            prev_layer, layer  = self.layers[j-1], self.layers[j]
            layer.set_inpt(
                prev_layer.output, prev_layer.output_dropout, self.mini_batch_size)
        self.output = self.layers[-1].output
        self.output_dropout = self.layers[-1].output_dropout

    def SGD(self, training_data, epochs, mini_batch_size, eta,
            validation_data, test_data, lmbda=0.0):
        """Train the network using mini-batch stochastic gradient descent."""
        training_x, training_y = training_data
        validation_x, validation_y = validation_data
        test_x, test_y = test_data

        # compute number of minibatches for training, validation and testing
        num_training_batches = size(training_data)/mini_batch_size
        num_validation_batches = size(validation_data)/mini_batch_size
        num_test_batches = size(test_data)/mini_batch_size

        # define the (regularized) cost function, symbolic gradients, and updates
        l2_norm_squared = sum([(layer.w**2).sum() for layer in self.layers])
        cost = self.layers[-1].cost(self)+\
               0.5*lmbda*l2_norm_squared/num_training_batches
        grads = T.grad(cost, self.params)
        updates = [(param, param-eta*grad)
                   for param, grad in zip(self.params, grads)]

        # define functions to train a mini-batch, and to compute the
        # accuracy in validation and test mini-batches.
        i = T.lscalar() # mini-batch index
        train_mb = theano.function(
            [i], cost, updates=updates,
            givens={
                self.x:
                training_x[i*self.mini_batch_size: (i+1)*self.mini_batch_size],
                self.y:
                training_y[i*self.mini_batch_size: (i+1)*self.mini_batch_size]
            })
        validate_mb_accuracy = theano.function(
            [i], self.layers[-1].accuracy(self.y),
            givens={
                self.x:
                validation_x[i*self.mini_batch_size: (i+1)*self.mini_batch_size],
                self.y:
                validation_y[i*self.mini_batch_size: (i+1)*self.mini_batch_size]



21.6.18, 22(00Neural networks and deep learning

Page 41 of 70http://neuralnetworksanddeeplearning.com/chap6.html

            })
        test_mb_accuracy = theano.function(
            [i], self.layers[-1].accuracy(self.y),
            givens={
                self.x:
                test_x[i*self.mini_batch_size: (i+1)*self.mini_batch_size],
                self.y:
                test_y[i*self.mini_batch_size: (i+1)*self.mini_batch_size]
            })
        self.test_mb_predictions = theano.function(
            [i], self.layers[-1].y_out,
            givens={
                self.x:
                test_x[i*self.mini_batch_size: (i+1)*self.mini_batch_size]
            })
        # Do the actual training
        best_validation_accuracy = 0.0
        for epoch in xrange(epochs):
            for minibatch_index in xrange(num_training_batches):
                iteration = num_training_batches*epoch+minibatch_index
                if iteration % 1000 == 0:
                    print("Training mini-batch number {0}".format(iteration))
                cost_ij = train_mb(minibatch_index)
                if (iteration+1) % num_training_batches == 0:
                    validation_accuracy = np.mean(
                        [validate_mb_accuracy(j) for j in xrange(num_validation_batches)])
                    print("Epoch {0}: validation accuracy {1:.2%}".format(
                        epoch, validation_accuracy))
                    if validation_accuracy >= best_validation_accuracy:
                        print("This is the best validation accuracy to date.")
                        best_validation_accuracy = validation_accuracy
                        best_iteration = iteration
                        if test_data:
                            test_accuracy = np.mean(
                                [test_mb_accuracy(j) for j in xrange(num_test_batches)])
                            print('The corresponding test accuracy is {0:.2%}'.format(
                                test_accuracy))
        print("Finished training network.")
        print("Best validation accuracy of {0:.2%} obtained at iteration {1}".format(
            best_validation_accuracy, best_iteration))
        print("Corresponding test accuracy of {0:.2%}".format(test_accuracy))

#### Define layer types

class ConvPoolLayer(object):
    """Used to create a combination of a convolutional and a max-pooling
    layer.  A more sophisticated implementation would separate the

    two, but for our purposes we'll always use them together, and it

    simplifies the code, so it makes sense to combine them.

    """

    def __init__(self, filter_shape, image_shape, poolsize=(2, 2),
                 activation_fn=sigmoid):
        """`filter_shape` is a tuple of length 4, whose entries are the number



21.6.18, 22(00Neural networks and deep learning

Page 42 of 70http://neuralnetworksanddeeplearning.com/chap6.html

        of filters, the number of input feature maps, the filter height, and the

        filter width.

        `image_shape` is a tuple of length 4, whose entries are the

        mini-batch size, the number of input feature maps, the image

        height, and the image width.

        `poolsize` is a tuple of length 2, whose entries are the y and

        x pooling sizes.

        """

        self.filter_shape = filter_shape
        self.image_shape = image_shape
        self.poolsize = poolsize
        self.activation_fn=activation_fn
        # initialize weights and biases
        n_out = (filter_shape[0]*np.prod(filter_shape[2:])/np.prod(poolsize))
        self.w = theano.shared(
            np.asarray(
                np.random.normal(loc=0, scale=np.sqrt(1.0/n_out), size=filter_shape),
                dtype=theano.config.floatX),
            borrow=True)
        self.b = theano.shared(
            np.asarray(
                np.random.normal(loc=0, scale=1.0, size=(filter_shape[0],)),
                dtype=theano.config.floatX),
            borrow=True)
        self.params = [self.w, self.b]

    def set_inpt(self, inpt, inpt_dropout, mini_batch_size):
        self.inpt = inpt.reshape(self.image_shape)
        conv_out = conv.conv2d(
            input=self.inpt, filters=self.w, filter_shape=self.filter_shape,
            image_shape=self.image_shape)
        pooled_out = downsample.max_pool_2d(
            input=conv_out, ds=self.poolsize, ignore_border=True)
        self.output = self.activation_fn(
            pooled_out + self.b.dimshuffle('x', 0, 'x', 'x'))
        self.output_dropout = self.output # no dropout in the convolutional layers

class FullyConnectedLayer(object):

    def __init__(self, n_in, n_out, activation_fn=sigmoid, p_dropout=0.0):
        self.n_in = n_in
        self.n_out = n_out
        self.activation_fn = activation_fn
        self.p_dropout = p_dropout
        # Initialize weights and biases
        self.w = theano.shared(
            np.asarray(
                np.random.normal(
                    loc=0.0, scale=np.sqrt(1.0/n_out), size=(n_in, n_out)),
                dtype=theano.config.floatX),
            name='w', borrow=True)
        self.b = theano.shared(



21.6.18, 22(00Neural networks and deep learning

Page 43 of 70http://neuralnetworksanddeeplearning.com/chap6.html

            np.asarray(np.random.normal(loc=0.0, scale=1.0, size=(n_out,)),
                       dtype=theano.config.floatX),
            name='b', borrow=True)
        self.params = [self.w, self.b]

    def set_inpt(self, inpt, inpt_dropout, mini_batch_size):
        self.inpt = inpt.reshape((mini_batch_size, self.n_in))
        self.output = self.activation_fn(
            (1-self.p_dropout)*T.dot(self.inpt, self.w) + self.b)
        self.y_out = T.argmax(self.output, axis=1)
        self.inpt_dropout = dropout_layer(
            inpt_dropout.reshape((mini_batch_size, self.n_in)), self.p_dropout)
        self.output_dropout = self.activation_fn(
            T.dot(self.inpt_dropout, self.w) + self.b)

    def accuracy(self, y):
        "Return the accuracy for the mini-batch."
        return T.mean(T.eq(y, self.y_out))

class SoftmaxLayer(object):

    def __init__(self, n_in, n_out, p_dropout=0.0):
        self.n_in = n_in
        self.n_out = n_out
        self.p_dropout = p_dropout
        # Initialize weights and biases
        self.w = theano.shared(
            np.zeros((n_in, n_out), dtype=theano.config.floatX),
            name='w', borrow=True)
        self.b = theano.shared(
            np.zeros((n_out,), dtype=theano.config.floatX),
            name='b', borrow=True)
        self.params = [self.w, self.b]

    def set_inpt(self, inpt, inpt_dropout, mini_batch_size):
        self.inpt = inpt.reshape((mini_batch_size, self.n_in))
        self.output = softmax((1-self.p_dropout)*T.dot(self.inpt, self.w) + self.b)
        self.y_out = T.argmax(self.output, axis=1)
        self.inpt_dropout = dropout_layer(
            inpt_dropout.reshape((mini_batch_size, self.n_in)), self.p_dropout)
        self.output_dropout = softmax(T.dot(self.inpt_dropout, self.w) + self.b)

    def cost(self, net):
        "Return the log-likelihood cost."
        return -T.mean(T.log(self.output_dropout)[T.arange(net.y.shape[0]), net.y])

    def accuracy(self, y):
        "Return the accuracy for the mini-batch."
        return T.mean(T.eq(y, self.y_out))

#### Miscellanea

def size(data):
    "Return the size of the dataset `data`."
    return data[0].get_value(borrow=True).shape[0]



21.6.18, 22(00Neural networks and deep learning

Page 44 of 70http://neuralnetworksanddeeplearning.com/chap6.html

def dropout_layer(layer, p_dropout):
    srng = shared_randomstreams.RandomStreams(
        np.random.RandomState(0).randint(999999))
    mask = srng.binomial(n=1, p=1-p_dropout, size=layer.shape)
    return layer*T.cast(mask, theano.config.floatX)

Problems

At present, the SGD method requires the user to manually
choose the number of epochs to train for. Earlier in the book
we discussed an automated way of selecting the number of
epochs to train for, known as early stopping. Modify
network3.py to implement early stopping.

Add a Network method to return the accuracy on an arbitrary
data set.

Modify the SGD method to allow the learning rate  to be a
function of the epoch number. Hint: After working on this
problem for a while, you may find it useful to see the
discussion at this link.

Earlier in the chapter I described a technique for expanding the
training data by applying (small) rotations, skewing, and
translation. Modify network3.py to incorporate all these
techniques. Note: Unless you have a tremendous amount of
memory, it is not practical to explicitly generate the entire
expanded data set. So you should consider alternate
approaches.

Add the ability to load and save networks to network3.py.

A shortcoming of the current code is that it provides few
diagnostic tools. Can you think of any diagnostics to add that
would make it easier to understand to what extent a network is
overfitting? Add them.

η

http://neuralnetworksanddeeplearning.com/chap3.html#early_stopping
https://groups.google.com/forum/#!topic/theano-users/NQ9NYLvleGc


21.6.18, 22(00Neural networks and deep learning

Page 45 of 70http://neuralnetworksanddeeplearning.com/chap6.html

We've used the same initialization procedure for rectified linear
units as for sigmoid (and tanh) neurons. Our argument for that
initialization was specific to the sigmoid function. Consider a
network made entirely of rectified linear units (including
outputs). Show that rescaling all the weights in the network by
a constant factor  simply rescales the outputs by a factor 

, where  is the number of layers. How does this change if
the final layer is a softmax? What do you think of using the
sigmoid initialization procedure for the rectified linear units?
Can you think of a better initialization procedure? Note: This is
a very open-ended problem, not something with a simple self-
contained answer. Still, considering the problem will help you
better understand networks containing rectified linear units.

Our analysis of the unstable gradient problem was for sigmoid
neurons. How does the analysis change for networks made up
of rectified linear units? Can you think of a good way of
modifying such a network so it doesn't suffer from the unstable
gradient problem? Note: The word good in the second part of
this makes the problem a research problem. It's actually easy
to think of ways of making such modifications. But I haven't
investigated in enough depth to know of a really good
technique.

Recent progress in image recognition
In 1998, the year MNIST was introduced, it took weeks to train a
state-of-the-art workstation to achieve accuracies substantially
worse than those we can achieve using a GPU and less than an hour
of training. Thus, MNIST is no longer a problem that pushes the
limits of available technique; rather, the speed of training means
that it is a problem good for teaching and learning purposes.
Meanwhile, the focus of research has moved on, and modern work

c > 0
cL− 1 L

http://neuralnetworksanddeeplearning.com/chap3.html#weight_initialization
http://neuralnetworksanddeeplearning.com/chap5.html#what's_causing_the_vanishing_gradient_problem_unstable_gradients_in_deep_neural_nets


21.6.18, 22(00Neural networks and deep learning

Page 46 of 70http://neuralnetworksanddeeplearning.com/chap6.html

involves much more challenging image recognition problems. In
this section, I briefly describe some recent work on image
recognition using neural networks.

The section is different to most of the book. Through the book I've
focused on ideas likely to be of lasting interest - ideas such as
backpropagation, regularization, and convolutional networks. I've
tried to avoid results which are fashionable as I write, but whose
long-term value is unknown. In science, such results are more often
than not ephemera which fade and have little lasting impact. Given
this, a skeptic might say: "well, surely the recent progress in image
recognition is an example of such ephemera? In another two or
three years, things will have moved on. So surely these results are
only of interest to a few specialists who want to compete at the
absolute frontier? Why bother discussing it?"

Such a skeptic is right that some of the finer details of recent papers
will gradually diminish in perceived importance. With that said, the
past few years have seen extraordinary improvements using deep
nets to attack extremely difficult image recognition tasks. Imagine a
historian of science writing about computer vision in the year 2100.
They will identify the years 2011 to 2015 (and probably a few years
beyond) as a time of huge breakthroughs, driven by deep
convolutional nets. That doesn't mean deep convolutional nets will
still be used in 2100, much less detailed ideas such as dropout,
rectified linear units, and so on. But it does mean that an important
transition is taking place, right now, in the history of ideas. It's a bit
like watching the discovery of the atom, or the invention of
antibiotics: invention and discovery on a historic scale. And so
while we won't dig down deep into details, it's worth getting some
idea of the exciting discoveries currently being made.

The 2012 LRMD paper: Let me start with a 2012 paper* from a
group of researchers from Stanford and Google. I'll refer to this

*Building high-level features using large scale
unsupervised learning, by Quoc Le, Marc'Aurelio
Ranzato, Rajat Monga, Matthieu Devin, Kai

http://research.google.com/pubs/pub38115.html


21.6.18, 22(00Neural networks and deep learning

Page 47 of 70http://neuralnetworksanddeeplearning.com/chap6.html

paper as LRMD, after the last names of the first four authors.
LRMD used a neural network to classify images from ImageNet, a
very challenging image recognition problem. The 2011 ImageNet
data that they used included 16 million full color images, in 20
thousand categories. The images were crawled from the open net,
and classified by workers from Amazon's Mechanical Turk service.
Here's a few ImageNet images*:

These are, respectively, in the categories for beading plane, brown
root rot fungus, scalded milk, and the common roundworm. If
you're looking for a challenge, I encourage you to visit ImageNet's
list of hand tools, which distinguishes between beading planes,
block planes, chamfer planes, and about a dozen other types of
plane, amongst other categories. I don't know about you, but I
cannot confidently distinguish between all these tool types. This is
obviously a much more challenging image recognition task than
MNIST! LRMD's network obtained a respectable  percent
accuracy for correctly classifying ImageNet images. That may not
sound impressive, but it was a huge improvement over the previous
best result of  percent accuracy. That jump suggested that neural
networks might offer a powerful approach to very challenging
image recognition tasks, such as ImageNet.

The 2012 KSH paper: The work of LRMD was followed by a 2012
paper of Krizhevsky, Sutskever and Hinton (KSH)*. KSH trained
and tested a deep convolutional neural network using a restricted
subset of the ImageNet data. The subset they used came from a
popular machine learning competition - the ImageNet Large-Scale
Visual Recognition Challenge (ILSVRC). Using a competition

Chen, Greg Corrado, Jeff Dean, and Andrew Ng
(2012). Note that the detailed architecture of the
network used in the paper differed in many
details from the deep convolutional networks
we've been studying. Broadly speaking, however,
LRMD is based on many similar ideas.

*These are from the 2014 dataset, which is
somewhat changed from 2011. Qualitatively,
however, the dataset is extremely similar. Details
about ImageNet are available in the original
ImageNet paper, ImageNet: a large-scale
hierarchical image database, by Jia Deng, Wei
Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei (2009).

15.8

9.3

*ImageNet classification with deep convolutional
neural networks, by Alex Krizhevsky, Ilya
Sutskever, and Geoffrey E. Hinton (2012).

http://www.image-net.org/
http://www.image-net.org/synset?wnid=n03489162
http://www.image-net.org/papers/imagenet_cvpr09.pdf
http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf


21.6.18, 22(00Neural networks and deep learning

Page 48 of 70http://neuralnetworksanddeeplearning.com/chap6.html

dataset gave them a good way of comparing their approach to other
leading techniques. The ILSVRC-2012 training set contained about
1.2 million ImageNet images, drawn from 1,000 categories. The
validation and test sets contained 50,000 and 150,000 images,
respectively, drawn from the same 1,000 categories.

One difficulty in running the ILSVRC competition is that many
ImageNet images contain multiple objects. Suppose an image
shows a labrador retriever chasing a soccer ball. The so-called
"correct" ImageNet classification of the image might be as a
labrador retriever. Should an algorithm be penalized if it labels the
image as a soccer ball? Because of this ambiguity, an algorithm was
considered correct if the actual ImageNet classification was among
the  classifications the algorithm considered most likely. By this
top-  criterion, KSH's deep convolutional network achieved an
accuracy of  percent, vastly better than the next-best contest
entry, which achieved an accuracy of  percent. Using the more
restrictive metric of getting the label exactly right, KSH's network
achieved an accuracy of  percent.

It's worth briefly describing KSH's network, since it has inspired
much subsequent work. It's also, as we shall see, closely related to
the networks we trained earlier in this chapter, albeit more
elaborate. KSH used a deep convolutional neural network, trained
on two GPUs. They used two GPUs because the particular type of
GPU they were using (an NVIDIA GeForce GTX 580) didn't have
enough on-chip memory to store their entire network. So they split
the network into two parts, partitioned across the two GPUs.

The KSH network has  layers of hidden neurons. The first  hidden
layers are convolutional layers (some with max-pooling), while the
next  layers are fully-connected layers. The output layer is a -
unit softmax layer, corresponding to the  image classes. Here's
a sketch of the network, taken from the KSH paper*. The details are

5
5

84.7
73.8

63.3

7 5

2 1, 000
1, 000

*Thanks to Ilya Sutskever.



21.6.18, 22(00Neural networks and deep learning

Page 49 of 70http://neuralnetworksanddeeplearning.com/chap6.html

explained below. Note that many layers are split into  parts,
corresponding to the  GPUs.

The input layer contains  neurons, representing the
RGB values for a  image. Recall that, as mentioned earlier,
ImageNet contains images of varying resolution. This poses a
problem, since a neural network's input layer is usually of a fixed
size. KSH dealt with this by rescaling each image so the shorter side
had length . They then cropped out a  area in the
center of the rescaled image. Finally, KSH extracted random 

 subimages (and horizontal reflections) from the 
images. They did this random cropping as a way of expanding the
training data, and thus reducing overfitting. This is particularly
helpful in a large network such as KSH's. It was these 
images which were used as inputs to the network. In most cases the
cropped image still contains the main object from the uncropped
image.

Moving on to the hidden layers in KSH's network, the first hidden
layer is a convolutional layer, with a max-pooling step. It uses local
receptive fields of size , and a stride length of  pixels. There
are a total of  feature maps. The feature maps are split into two
groups of  each, with the first  feature maps residing on one
GPU, and the second  feature maps residing on the other GPU.
The max-pooling in this and later layers is done in  regions, but
the pooling regions are allowed to overlap, and are just  pixels

2
2

3 × 224 × 224
224 × 224

256 256 × 256

224 × 224 256 × 256

224 × 224

11 × 11 4
96

48 48
48

3 × 3
2



21.6.18, 22(00Neural networks and deep learning

Page 50 of 70http://neuralnetworksanddeeplearning.com/chap6.html

apart.

The second hidden layer is also a convolutional layer, with a max-
pooling step. It uses  local receptive fields, and there's a total of

 feature maps, split into  on each GPU. Note that the feature
maps only use  input channels, not the full  output from the
previous layer (as would usually be the case). This is because any
single feature map only uses inputs from the same GPU. In this
sense the network departs from the convolutional architecture we
described earlier in the chapter, though obviously the basic idea is
still the same.

The third, fourth and fifth hidden layers are convolutional layers,
but unlike the previous layers, they do not involve max-pooling.
Their respectives parameters are: (3)  feature maps, with 
local receptive fields, and  input channels; (4)  feature maps,
with  local receptive fields, and  input channels; and (5) 
feature maps, with  local receptive fields, and  input
channels. Note that the third layer involves some inter-GPU
communication (as depicted in the figure) in order that the feature
maps use all  input channels.

The sixth and seventh hidden layers are fully-connected layers, with
 neurons in each layer.

The output layer is a -unit softmax layer.

The KSH network takes advantage of many techniques. Instead of
using the sigmoid or tanh activation functions, KSH use rectified
linear units, which sped up training significantly. KSH's network
had roughly 60 million learned parameters, and was thus, even with
the large training set, susceptible to overfitting. To overcome this,
they expanded the training set using the random cropping strategy
we discussed above. They also further addressed overfitting by

5 × 5
256 128

48 96

384 3 × 3
256 384

3 × 3 192 256
3 × 3 192

256

4, 096

1, 000



21.6.18, 22(00Neural networks and deep learning

Page 51 of 70http://neuralnetworksanddeeplearning.com/chap6.html

using a variant of l2 regularization, and dropout. The network itself
was trained using momentum-based mini-batch stochastic gradient
descent.

That's an overview of many of the core ideas in the KSH paper. I've
omitted some details, for which you should look at the paper. You
can also look at Alex Krizhevsky's cuda-convnet (and successors),
which contains code implementing many of the ideas. A Theano-
based implementation has also been developed*, with the code
available here. The code is recognizably along similar lines to that
developed in this chapter, although the use of multiple GPUs
complicates things somewhat. The Caffe neural nets framework also
includes a version of the KSH network, see their Model Zoo for
details.

The 2014 ILSVRC competition: Since 2012, rapid progress
continues to be made. Consider the 2014 ILSVRC competition. As
in 2012, it involved a training set of  million images, in 
categories, and the figure of merit was whether the top  predictions
included the correct category. The winning team, based primarily at
Google*, used a deep convolutional network with  layers of
neurons. They called their network GoogLeNet, as a homage to
LeNet-5. GoogLeNet achieved a top-5 accuracy of  percent, a
giant improvement over the 2013 winner (Clarifai, with 
percent), and the 2012 winner (KSH, with  percent).

Just how good is GoogLeNet's  percent accuracy? In 2014 a
team of researchers wrote a survey paper about the ILSVRC
competition*. One of the questions they address is how well
humans perform on ILSVRC. To do this, they built a system which
lets humans classify ILSVRC images. As one of the authors, Andrej
Karpathy, explains in an informative blog post, it was a lot of
trouble to get the humans up to GoogLeNet's performance:

*Theano-based large-scale visual recognition
with multiple GPUs, by Weiguang Ding, Ruoyan
Wang, Fei Mao, and Graham Taylor (2014).

1.2 1, 000
5

*Going deeper with convolutions, by Christian
Szegedy, Wei Liu, Yangqing Jia, Pierre
Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and
Andrew Rabinovich (2014).

22

93.33
88.3

84.7

93.33

*ImageNet large scale visual recognition
challenge, by Olga Russakovsky, Jia Deng, Hao
Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya
Khosla, Michael Bernstein, Alexander C. Berg,
and Li Fei-Fei (2014).

http://neuralnetworksanddeeplearning.com/chap3.html#regularization
http://neuralnetworksanddeeplearning.com/chap3.html#other_techniques_for_regularization
http://neuralnetworksanddeeplearning.com/chap3.html#variations_on_stochastic_gradient_descent
https://code.google.com/p/cuda-convnet/
https://github.com/uoguelph-mlrg/theano_alexnet
http://caffe.berkeleyvision.org/model_zoo.html
http://www.clarifai.com/
http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/
http://arxiv.org/abs/1412.2302
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.0575


21.6.18, 22(00Neural networks and deep learning

Page 52 of 70http://neuralnetworksanddeeplearning.com/chap6.html

...the task of labeling images with 5 out of 1000 categories
quickly turned out to be extremely challenging, even for
some friends in the lab who have been working on ILSVRC
and its classes for a while. First we thought we would put it
up on [Amazon Mechanical Turk]. Then we thought we
could recruit paid undergrads. Then I organized a labeling
party of intense labeling effort only among the (expert
labelers) in our lab. Then I developed a modified interface
that used GoogLeNet predictions to prune the number of
categories from 1000 to only about 100. It was still too
hard - people kept missing categories and getting up to
ranges of 13-15% error rates. In the end I realized that to
get anywhere competitively close to GoogLeNet, it was
most efficient if I sat down and went through the painfully
long training process and the subsequent careful
annotation process myself... The labeling happened at a
rate of about 1 per minute, but this decreased over time...
Some images are easily recognized, while some images
(such as those of fine-grained breeds of dogs, birds, or
monkeys) can require multiple minutes of concentrated
effort. I became very good at identifying breeds of dogs...
Based on the sample of images I worked on, the
GoogLeNet classification error turned out to be 6.8%... My
own error in the end turned out to be 5.1%, approximately
1.7% better.

In other words, an expert human, working painstakingly, was with
great effort able to narrowly beat the deep neural network. In fact,
Karpathy reports that a second human expert, trained on a smaller
sample of images, was only able to attain a  percent top-5 error
rate, significantly below GoogLeNet's performance. About half the
errors were due to the expert "failing to spot and consider the
ground truth label as an option".

12.0



21.6.18, 22(00Neural networks and deep learning

Page 53 of 70http://neuralnetworksanddeeplearning.com/chap6.html

These are astonishing results. Indeed, since this work, several
teams have reported systems whose top-5 error rate is actually
better than 5.1%. This has sometimes been reported in the media as
the systems having better-than-human vision. While the results are
genuinely exciting, there are many caveats that make it misleading
to think of the systems as having better-than-human vision. The
ILSVRC challenge is in many ways a rather limited problem - a
crawl of the open web is not necessarily representative of images
found in applications! And, of course, the top-  criterion is quite
artificial. We are still a long way from solving the problem of image
recognition or, more broadly, computer vision. Still, it's extremely
encouraging to see so much progress made on such a challenging
problem, over just a few years.

Other activity: I've focused on ImageNet, but there's a
considerable amount of other activity using neural nets to do image
recognition. Let me briefly describe a few interesting recent results,
just to give the flavour of some current work.

One encouraging practical set of results comes from a team at
Google, who applied deep convolutional networks to the problem of
recognizing street numbers in Google's Street View imagery*. In
their paper, they report detecting and automatically transcribing
nearly 100 million street numbers at an accuracy similar to that of a
human operator. The system is fast: their system transcribed all of
Street View's images of street numbers in France in less than an
hour! They say: "Having this new dataset significantly increased the
geocoding quality of Google Maps in several countries especially the
ones that did not already have other sources of good geocoding."
And they go on to make the broader claim: "We believe with this
model we have solved [optical character recognition] for short
sequences [of characters] for many applications."

I've perhaps given the impression that it's all a parade of

5

*Multi-digit Number Recognition from Street
View Imagery using Deep Convolutional Neural
Networks, by Ian J. Goodfellow, Yaroslav
Bulatov, Julian Ibarz, Sacha Arnoud, and Vinay
Shet (2013).

http://arxiv.org/abs/1312.6082


21.6.18, 22(00Neural networks and deep learning

Page 54 of 70http://neuralnetworksanddeeplearning.com/chap6.html

encouraging results. Of course, some of the most interesting work
reports on fundamental things we don't yet understand. For
instance, a 2013 paper* showed that deep networks may suffer from
what are effectively blind spots. Consider the lines of images below.
On the left is an ImageNet image classified correctly by their
network. On the right is a slightly perturbed image (the
perturbation is in the middle) which is classified incorrectly by the
network. The authors found that there are such "adversarial"
images for every sample image, not just a few special ones.

This is a disturbing result. The paper used a network based on the
same code as KSH's network - that is, just the type of network that
is being increasingly widely used. While such neural networks
compute functions which are, in principle, continuous, results like
this suggest that in practice they're likely to compute functions
which are very nearly discontinuous. Worse, they'll be
discontinuous in ways that violate our intuition about what is
reasonable behavior. That's concerning. Furthermore, it's not yet
well understood what's causing the discontinuity: is it something

*Intriguing properties of neural networks, by
Christian Szegedy, Wojciech Zaremba, Ilya
Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus (2013)

http://arxiv.org/abs/1312.6199


21.6.18, 22(00Neural networks and deep learning

Page 55 of 70http://neuralnetworksanddeeplearning.com/chap6.html

about the loss function? The activation functions used? The
architecture of the network? Something else? We don't yet know.

Now, these results are not quite as bad as they sound. Although
such adversarial images are common, they're also unlikely in
practice. As the paper notes:

The existence of the adversarial negatives appears to be in
contradiction with the network’s ability to achieve high
generalization performance. Indeed, if the network can
generalize well, how can it be confused by these
adversarial negatives, which are indistinguishable from the
regular examples? The explanation is that the set of
adversarial negatives is of extremely low probability, and
thus is never (or rarely) observed in the test set, yet it is
dense (much like the rational numbers), and so it is found
near virtually every test case.

Nonetheless, it is distressing that we understand neural nets so
poorly that this kind of result should be a recent discovery. Of
course, a major benefit of the results is that they have stimulated
much followup work. For example, one recent paper* shows that
given a trained network it's possible to generate images which look
to a human like white noise, but which the network classifies as
being in a known category with a very high degree of confidence.
This is another demonstration that we have a long way to go in
understanding neural networks and their use in image recognition.

Despite results like this, the overall picture is encouraging. We're
seeing rapid progress on extremely difficult benchmarks, like
ImageNet. We're also seeing rapid progress in the solution of real-
world problems, like recognizing street numbers in StreetView. But
while this is encouraging it's not enough just to see improvements
on benchmarks, or even real-world applications. There are

*Deep Neural Networks are Easily Fooled: High
Confidence Predictions for Unrecognizable
Images, by Anh Nguyen, Jason Yosinski, and Jeff
Clune (2014).

http://arxiv.org/abs/1412.1897


21.6.18, 22(00Neural networks and deep learning

Page 56 of 70http://neuralnetworksanddeeplearning.com/chap6.html

fundamental phenomena which we still understand poorly, such as
the existence of adversarial images. When such fundamental
problems are still being discovered (never mind solved), it is
premature to say that we're near solving the problem of image
recognition. At the same time such problems are an exciting
stimulus to further work.

Other approaches to deep neural nets
Through this book, we've concentrated on a single problem:
classifying the MNIST digits. It's a juicy problem which forced us to
understand many powerful ideas: stochastic gradient descent,
backpropagation, convolutional nets, regularization, and more. But
it's also a narrow problem. If you read the neural networks
literature, you'll run into many ideas we haven't discussed:
recurrent neural networks, Boltzmann machines, generative
models, transfer learning, reinforcement learning, and so on, on
and on  and on! Neural networks is a vast field. However, many
important ideas are variations on ideas we've already discussed,
and can be understood with a little effort. In this section I provide a
glimpse of these as yet unseen vistas. The discussion isn't detailed,
nor comprehensive - that would greatly expand the book. Rather,
it's impressionistic, an attempt to evoke the conceptual richness of
the field, and to relate some of those riches to what we've already
seen. Through the section, I'll provide a few links to other sources,
as entrees to learn more. Of course, many of these links will soon be
superseded, and you may wish to search out more recent literature.
That point notwithstanding, I expect many of the underlying ideas
to be of lasting interest.

Recurrent neural networks (RNNs): In the feedforward nets
we've been using there is a single input which completely
determines the activations of all the neurons through the remaining

…



21.6.18, 22(00Neural networks and deep learning

Page 57 of 70http://neuralnetworksanddeeplearning.com/chap6.html

layers. It's a very static picture: everything in the network is fixed,
with a frozen, crystalline quality to it. But suppose we allow the
elements in the network to keep changing in a dynamic way. For
instance, the behaviour of hidden neurons might not just be
determined by the activations in previous hidden layers, but also by
the activations at earlier times. Indeed, a neuron's activation might
be determined in part by its own activation at an earlier time. That's
certainly not what happens in a feedforward network. Or perhaps
the activations of hidden and output neurons won't be determined
just by the current input to the network, but also by earlier inputs.

Neural networks with this kind of time-varying behaviour are
known as recurrent neural networks or RNNs. There are many
different ways of mathematically formalizing the informal
description of recurrent nets given in the last paragraph. You can
get the flavour of some of these mathematical models by glancing at
the Wikipedia article on RNNs. As I write, that page lists no fewer
than 13 different models. But mathematical details aside, the broad
idea is that RNNs are neural networks in which there is some
notion of dynamic change over time. And, not surprisingly, they're
particularly useful in analysing data or processes that change over
time. Such data and processes arise naturally in problems such as
speech or natural language, for example.

One way RNNs are currently being used is to connect neural
networks more closely to traditional ways of thinking about
algorithms, ways of thinking based on concepts such as Turing
machines and (conventional) programming languages. A 2014
paper developed an RNN which could take as input a character-by-
character description of a (very, very simple!) Python program, and
use that description to predict the output. Informally, the network
is learning to "understand" certain Python programs. A second
paper, also from 2014, used RNNs as a starting point to develop

http://en.wikipedia.org/wiki/Recurrent_neural_network
http://arxiv.org/abs/1410.4615
http://arxiv.org/abs/1410.5401


21.6.18, 22(00Neural networks and deep learning

Page 58 of 70http://neuralnetworksanddeeplearning.com/chap6.html

what they called a neural Turing machine (NTM). This is a
universal computer whose entire structure can be trained using
gradient descent. They trained their NTM to infer algorithms for
several simple problems, such as sorting and copying.

As it stands, these are extremely simple toy models. Learning to
execute the Python program print(398345+42598) doesn't make a
network into a full-fledged Python interpreter! It's not clear how
much further it will be possible to push the ideas. Still, the results
are intriguing. Historically, neural networks have done well at
pattern recognition problems where conventional algorithmic
approaches have trouble. Vice versa, conventional algorithmic
approaches are good at solving problems that neural nets aren't so
good at. No-one today implements a web server or a database
program using a neural network! It'd be great to develop unified
models that integrate the strengths of both neural networks and
more traditional approaches to algorithms. RNNs and ideas
inspired by RNNs may help us do that.

RNNs have also been used in recent years to attack many other
problems. They've been particularly useful in speech recognition.
Approaches based on RNNs have, for example, set records for the
accuracy of phoneme recognition. They've also been used to develop
improved models of the language people use while speaking. Better
language models help disambiguate utterances that otherwise
sound alike. A good language model will, for example, tell us that
"to infinity and beyond" is much more likely than "two infinity and
beyond", despite the fact that the phrases sound identical. RNNs
have been used to set new records for certain language benchmarks.

This work is, incidentally, part of a broader use of deep neural nets
of all types, not just RNNs, in speech recognition. For example, an
approach based on deep nets has achieved outstanding results on
large vocabulary continuous speech recognition. And another

http://arxiv.org/abs/1303.5778
http://www.fit.vutbr.cz/~imikolov/rnnlm/thesis.pdf
http://arxiv.org/abs/1309.1501


21.6.18, 22(00Neural networks and deep learning

Page 59 of 70http://neuralnetworksanddeeplearning.com/chap6.html

system based on deep nets has been deployed in Google's Android
operating system (for related technical work, see Vincent
Vanhoucke's 2012-2015 papers).

I've said a little about what RNNs can do, but not so much about
how they work. It perhaps won't surprise you to learn that many of
the ideas used in feedforward networks can also be used in RNNs.
In particular, we can train RNNs using straightforward
modifications to gradient descent and backpropagation. Many other
ideas used in feedforward nets, ranging from regularization
techniques to convolutions to the activation and cost functions
used, are also useful in recurrent nets. And so many of the
techniques we've developed in the book can be adapted for use with
RNNs.

Long short-term memory units (LSTMs): One challenge
affecting RNNs is that early models turned out to be very difficult to
train, harder even than deep feedforward networks. The reason is
the unstable gradient problem discussed in Chapter 5. Recall that
the usual manifestation of this problem is that the gradient gets
smaller and smaller as it is propagated back through layers. This
makes learning in early layers extremely slow. The problem actually
gets worse in RNNs, since gradients aren't just propagated
backward through layers, they're propagated backward through
time. If the network runs for a long time that can make the gradient
extremely unstable and hard to learn from. Fortunately, it's possible
to incorporate an idea known as long short-term memory units
(LSTMs) into RNNs. The units were introduced by Hochreiter and
Schmidhuber in 1997 with the explicit purpose of helping address
the unstable gradient problem. LSTMs make it much easier to get
good results when training RNNs, and many recent papers
(including many that I linked above) make use of LSTMs or related
ideas.

http://www.wired.com/2013/02/android-neural-network/
http://research.google.com/pubs/VincentVanhoucke.html
http://neuralnetworksanddeeplearning.com/chap5.html
http://dx.doi.org/10.1162/neco.1997.9.8.1735


21.6.18, 22(00Neural networks and deep learning

Page 60 of 70http://neuralnetworksanddeeplearning.com/chap6.html

Deep belief nets, generative models, and Boltzmann
machines: Modern interest in deep learning began in 2006, with
papers explaining how to train a type of neural network known as a
deep belief network (DBN)*. DBNs were influential for several
years, but have since lessened in popularity, while models such as
feedforward networks and recurrent neural nets have become
fashionable. Despite this, DBNs have several properties that make
them interesting.

One reason DBNs are interesting is that they're an example of
what's called a generative model. In a feedforward network, we
specify the input activations, and they determine the activations of
the feature neurons later in the network. A generative model like a
DBN can be used in a similar way, but it's also possible to specify
the values of some of the feature neurons and then "run the
network backward", generating values for the input activations.
More concretely, a DBN trained on images of handwritten digits
can (potentially, and with some care) also be used to generate
images that look like handwritten digits. In other words, the DBN
would in some sense be learning to write. In this, a generative
model is much like the human brain: not only can it read digits, it
can also write them. In Geoffrey Hinton's memorable phrase, to
recognize shapes, first learn to generate images.

A second reason DBNs are interesting is that they can do
unsupervised and semi-supervised learning. For instance, when
trained with image data, DBNs can learn useful features for
understanding other images, even if the training images are
unlabelled. And the ability to do unsupervised learning is extremely
interesting both for fundamental scientific reasons, and - if it can be
made to work well enough - for practical applications.

Given these attractive features, why have DBNs lessened in
popularity as models for deep learning? Part of the reason is that

*See A fast learning algorithm for deep belief
nets, by Geoffrey Hinton, Simon Osindero, and
Yee-Whye Teh (2006), as well as the related
work in Reducing the dimensionality of data
with neural networks, by Geoffrey Hinton and
Ruslan Salakhutdinov (2006).

http://www.sciencedirect.com/science/article/pii/S0079612306650346
http://www.cs.toronto.edu/~hinton/absps/fastnc.pdf
http://www.sciencemag.org/content/313/5786/504.short


21.6.18, 22(00Neural networks and deep learning

Page 61 of 70http://neuralnetworksanddeeplearning.com/chap6.html

models such as feedforward and recurrent nets have achieved many
spectacular results, such as their breakthroughs on image and
speech recognition benchmarks. It's not surprising and quite right
that there's now lots of attention being paid to these models.
There's an unfortunate corollary, however. The marketplace of
ideas often functions in a winner-take-all fashion, with nearly all
attention going to the current fashion-of-the-moment in any given
area. It can become extremely difficult for people to work on
momentarily unfashionable ideas, even when those ideas are
obviously of real long-term interest. My personal opinion is that
DBNs and other generative models likely deserve more attention
than they are currently receiving. And I won't be surprised if DBNs
or a related model one day surpass the currently fashionable
models. For an introduction to DBNs, see this overview. I've also
found this article helpful. It isn't primarily about deep belief nets,
per se, but does contain much useful information about restricted
Boltzmann machines, which are a key component of DBNs.

Other ideas: What else is going on in neural networks and deep
learning? Well, there's a huge amount of other fascinating work.
Active areas of research include using neural networks to do natural
language processing (see also this informative review paper),
machine translation, as well as perhaps more surprising
applications such as music informatics. There are, of course, many
other areas too. In many cases, having read this book you should be
able to begin following recent work, although (of course) you'll need
to fill in gaps in presumed background knowledge.

Let me finish this section by mentioning a particularly fun paper. It
combines deep convolutional networks with a technique known as
reinforcement learning in order to learn to play video games well
(see also this followup). The idea is to use the convolutional
network to simplify the pixel data from the game screen, turning it

http://www.scholarpedia.org/article/Deep_belief_networks
http://www.cs.toronto.edu/~hinton/absps/guideTR.pdf
http://machinelearning.org/archive/icml2008/papers/391.pdf
http://arxiv.org/abs/1103.0398
http://neuralnetworksanddeeplearning.com/assets/MachineTranslation.pdf
http://yann.lecun.com/exdb/publis/pdf/humphrey-jiis-13.pdf
http://www.cs.toronto.edu/~vmnih/docs/dqn.pdf
http://www.nature.com/nature/journal/v518/n7540/abs/nature14236.html


21.6.18, 22(00Neural networks and deep learning

Page 62 of 70http://neuralnetworksanddeeplearning.com/chap6.html

into a simpler set of features, which can be used to decide which
action to take: "go left", "go down", "fire", and so on. What is
particularly interesting is that a single network learned to play
seven different classic video games pretty well, outperforming
human experts on three of the games. Now, this all sounds like a
stunt, and there's no doubt the paper was well marketed, with the
title "Playing Atari with reinforcement learning". But looking past
the surface gloss, consider that this system is taking raw pixel data -
it doesn't even know the game rules! - and from that data learning
to do high-quality decision-making in several very different and
very adversarial environments, each with its own complex set of
rules. That's pretty neat.

On the future of neural networks
Intention-driven user interfaces: There's an old joke in which
an impatient professor tells a confused student: "don't listen to
what I say; listen to what I mean". Historically, computers have
often been, like the confused student, in the dark about what their
users mean. But this is changing. I still remember my surprise the
first time I misspelled a Google search query, only to have Google
say "Did you mean [corrected query]?" and to offer the
corresponding search results. Google CEO Larry Page once
described the perfect search engine as understanding exactly what
[your queries] mean and giving you back exactly what you want.

This is a vision of an intention-driven user interface. In this vision,
instead of responding to users' literal queries, search will use
machine learning to take vague user input, discern precisely what
was meant, and take action on the basis of those insights.

The idea of intention-driven interfaces can be applied far more
broadly than search. Over the next few decades, thousands of

http://googleblog.blogspot.ca/2012/08/building-search-engine-of-future-one.html


21.6.18, 22(00Neural networks and deep learning

Page 63 of 70http://neuralnetworksanddeeplearning.com/chap6.html

companies will build products which use machine learning to make
user interfaces that can tolerate imprecision, while discerning and
acting on the user's true intent. We're already seeing early examples
of such intention-driven interfaces: Apple's Siri; Wolfram Alpha;
IBM's Watson; systems which can annotate photos and videos; and
much more.

Most of these products will fail. Inspired user interface design is
hard, and I expect many companies will take powerful machine
learning technology and use it to build insipid user interfaces. The
best machine learning in the world won't help if your user interface
concept stinks. But there will be a residue of products which
succeed. Over time that will cause a profound change in how we
relate to computers. Not so long ago - let's say, 2005 - users took it
for granted that they needed precision in most interactions with
computers. Indeed, computer literacy to a great extent meant
internalizing the idea that computers are extremely literal; a single
misplaced semi-colon may completely change the nature of an
interaction with a computer. But over the next few decades I expect
we'll develop many successful intention-driven user interfaces, and
that will dramatically change what we expect when interacting with
computers.

Machine learning, data science, and the virtuous circle of
innovation: Of course, machine learning isn't just being used to
build intention-driven interfaces. Another notable application is in
data science, where machine learning is used to find the "known
unknowns" hidden in data. This is already a fashionable area, and
much has been written about it, so I won't say much. But I do want
to mention one consequence of this fashion that is not so often
remarked: over the long run it's possible the biggest breakthrough
in machine learning won't be any single conceptual breakthrough.
Rather, the biggest breakthrough will be that machine learning

http://arxiv.org/abs/1411.4555


21.6.18, 22(00Neural networks and deep learning

Page 64 of 70http://neuralnetworksanddeeplearning.com/chap6.html

research becomes profitable, through applications to data science
and other areas. If a company can invest 1 dollar in machine
learning research and get 1 dollar and 10 cents back reasonably
rapidly, then a lot of money will end up in machine learning
research. Put another way, machine learning is an engine driving
the creation of several major new markets and areas of growth in
technology. The result will be large teams of people with deep
subject expertise, and with access to extraordinary resources. That
will propel machine learning further forward, creating more
markets and opportunities, a virtuous circle of innovation.

The role of neural networks and deep learning: I've been
talking broadly about machine learning as a creator of new
opportunities for technology. What will be the specific role of neural
networks and deep learning in all this?

To answer the question, it helps to look at history. Back in the
1980s there was a great deal of excitement and optimism about
neural networks, especially after backpropagation became widely
known. That excitement faded, and in the 1990s the machine
learning baton passed to other techniques, such as support vector
machines. Today, neural networks are again riding high, setting all
sorts of records, defeating all comers on many problems. But who is
to say that tomorrow some new approach won't be developed that
sweeps neural networks away again? Or perhaps progress with
neural networks will stagnate, and nothing will immediately arise to
take their place?

For this reason, it's much easier to think broadly about the future of
machine learning than about neural networks specifically. Part of
the problem is that we understand neural networks so poorly. Why
is it that neural networks can generalize so well? How is it that they
avoid overfitting as well as they do, given the very large number of
parameters they learn? Why is it that stochastic gradient descent



21.6.18, 22(00Neural networks and deep learning

Page 65 of 70http://neuralnetworksanddeeplearning.com/chap6.html

works as well as it does? How well will neural networks perform as
data sets are scaled? For instance, if ImageNet was expanded by a
factor of , would neural networks' performance improve more or
less than other machine learning techniques? These are all simple,
fundamental questions. And, at present, we understand the answers
to these questions very poorly. While that's the case, it's difficult to
say what role neural networks will play in the future of machine
learning.

I will make one prediction: I believe deep learning is here to stay.
The ability to learn hierarchies of concepts, building up multiple
layers of abstraction, seems to be fundamental to making sense of
the world. This doesn't mean tomorrow's deep learners won't be
radically different than today's. We could see major changes in the
constituent units used, in the architectures, or in the learning
algorithms. Those changes may be dramatic enough that we no
longer think of the resulting systems as neural networks. But they'd
still be doing deep learning.

Will neural networks and deep learning soon lead to
artificial intelligence? In this book we've focused on using
neural nets to do specific tasks, such as classifying images. Let's
broaden our ambitions, and ask: what about general-purpose
thinking computers? Can neural networks and deep learning help
us solve the problem of (general) artificial intelligence (AI)? And, if
so, given the rapid recent progress of deep learning, can we expect
general AI any time soon?

Addressing these questions comprehensively would take a separate
book. Instead, let me offer one observation. It's based on an idea
known as Conway's law:

Any organization that designs a system... will inevitably
produce a design whose structure is a copy of the

10

http://en.wikipedia.org/wiki/Conway%27s_law


21.6.18, 22(00Neural networks and deep learning

Page 66 of 70http://neuralnetworksanddeeplearning.com/chap6.html

organization's communication structure.

So, for example, Conway's law suggests that the design of a Boeing
747 aircraft will mirror the extended organizational structure of
Boeing and its contractors at the time the 747 was designed. Or for
a simple, specific example, consider a company building a complex
software application. If the application's dashboard is supposed to
be integrated with some machine learning algorithm, the person
building the dashboard better be talking to the company's machine
learning expert. Conway's law is merely that observation, writ large.

Upon first hearing Conway's law, many people respond either
"Well, isn't that banal and obvious?" or "Isn't that wrong?" Let me
start with the objection that it's wrong. As an instance of this
objection, consider the question: where does Boeing's accounting
department show up in the design of the 747? What about their
janitorial department? Their internal catering? And the answer is
that these parts of the organization probably don't show up
explicitly anywhere in the 747. So we should understand Conway's
law as referring only to those parts of an organization concerned
explicitly with design and engineering.

What about the other objection, that Conway's law is banal and
obvious? This may perhaps be true, but I don't think so, for
organizations too often act with disregard for Conway's law. Teams
building new products are often bloated with legacy hires or,
contrariwise, lack a person with some crucial expertise. Think of all
the products which have useless complicating features. Or think of
all the products which have obvious major deficiencies - e.g., a
terrible user interface. Problems in both classes are often caused by
a mismatch between the team that was needed to produce a good
product, and the team that was actually assembled. Conway's law
may be obvious, but that doesn't mean people don't routinely ignore
it.



21.6.18, 22(00Neural networks and deep learning

Page 67 of 70http://neuralnetworksanddeeplearning.com/chap6.html

Conway's law applies to the design and engineering of systems
where we start out with a pretty good understanding of the likely
constituent parts, and how to build them. It can't be applied directly
to the development of artificial intelligence, because AI isn't (yet)
such a problem: we don't know what the constituent parts are.
Indeed, we're not even sure what basic questions to be asking. In
others words, at this point AI is more a problem of science than of
engineering. Imagine beginning the design of the 747 without
knowing about jet engines or the principles of aerodynamics. You
wouldn't know what kinds of experts to hire into your organization.
As Wernher von Braun put it, "basic research is what I'm doing
when I don't know what I'm doing". Is there a version of Conway's
law that applies to problems which are more science than
engineering?

To gain insight into this question, consider the history of medicine.
In the early days, medicine was the domain of practitioners like
Galen and Hippocrates, who studied the entire body. But as our
knowledge grew, people were forced to specialize. We discovered
many deep new ideas*: think of things like the germ theory of
disease, for instance, or the understanding of how antibodies work,
or the understanding that the heart, lungs, veins and arteries form a
complete cardiovascular system. Such deep insights formed the
basis for subfields such as epidemiology, immunology, and the
cluster of inter-linked fields around the cardiovascular system. And
so the structure of our knowledge has shaped the social structure of
medicine. This is particularly striking in the case of immunology:
realizing the immune system exists and is a system worthy of study
is an extremely non-trivial insight. So we have an entire field of
medicine - with specialists, conferences, even prizes, and so on -
organized around something which is not just invisible, it's arguably
not a distinct thing at all.

*My apologies for overloading "deep". I won't
define "deep ideas" precisely, but loosely I mean
the kind of idea which is the basis for a rich field
of enquiry. The backpropagation algorithm and
the germ theory of disease are both good
examples.



21.6.18, 22(00Neural networks and deep learning

Page 68 of 70http://neuralnetworksanddeeplearning.com/chap6.html

This is a common pattern that has been repeated in many well-
established sciences: not just medicine, but physics, mathematics,
chemistry, and others. The fields start out monolithic, with just a
few deep ideas. Early experts can master all those ideas. But as time
passes that monolithic character changes. We discover many deep
new ideas, too many for any one person to really master. As a result,
the social structure of the field re-organizes and divides around
those ideas. Instead of a monolith, we have fields within fields
within fields, a complex, recursive, self-referential social structure,
whose organization mirrors the connections between our deepest
insights. And so the structure of our knowledge shapes the social
organization of science. But that social shape in turn constrains
and helps determine what we can discover. This is the scientific
analogue of Conway's law.

So what's this got to do with deep learning or AI?

Well, since the early days of AI there have been arguments about it
that go, on one side, "Hey, it's not going to be so hard, we've got
[super-special weapon] on our side", countered by "[super-special
weapon] won't be enough". Deep learning is the latest super-special
weapon I've heard used in such arguments*; earlier versions of the
argument used logic, or Prolog, or expert systems, or whatever the
most powerful technique of the day was. The problem with such
arguments is that they don't give you any good way of saying just
how powerful any given candidate super-special weapon is. Of
course, we've just spent a chapter reviewing evidence that deep
learning can solve extremely challenging problems. It certainly
looks very exciting and promising. But that was also true of systems
like Prolog or Eurisko or expert systems in their day. And so the
mere fact that a set of ideas looks very promising doesn't mean
much. How can we tell if deep learning is truly different from these
earlier ideas? Is there some way of measuring how powerful and

*Interestingly, often not by leading experts in
deep learning, who have been quite restrained.
See, for example, this thoughtful post by Yann
LeCun. This is a difference from many earlier
incarnations of the argument.

http://en.wikipedia.org/wiki/Eurisko
https://www.facebook.com/yann.lecun/posts/10152348155137143


21.6.18, 22(00Neural networks and deep learning

Page 69 of 70http://neuralnetworksanddeeplearning.com/chap6.html

promising a set of ideas is? Conway's law suggests that as a rough
and heuristic proxy metric we can evaluate the complexity of the
social structure associated to those ideas.

So, there are two questions to ask. First, how powerful a set of ideas
are associated to deep learning, according to this metric of social
complexity? Second, how powerful a theory will we need, in order
to be able to build a general artificial intelligence?

As to the first question: when we look at deep learning today, it's an
exciting and fast-paced but also relatively monolithic field. There
are a few deep ideas, and a few main conferences, with substantial
overlap between several of the conferences. And there is paper after
paper leveraging the same basic set of ideas: using stochastic
gradient descent (or a close variation) to optimize a cost function.
It's fantastic those ideas are so successful. But what we don't yet see
is lots of well-developed subfields, each exploring their own sets of
deep ideas, pushing deep learning in many directions. And so,
according to the metric of social complexity, deep learning is, if
you'll forgive the play on words, still a rather shallow field. It's still
possible for one person to master most of the deepest ideas in the
field.

On the second question: how complex and powerful a set of ideas
will be needed to obtain AI? Of course, the answer to this question
is: no-one knows for sure. But in the appendix I examine some of
the existing evidence on this question. I conclude that, even rather
optimistically, it's going to take many, many deep ideas to build an
AI. And so Conway's law suggests that to get to such a point we will
necessarily see the emergence of many interrelating disciplines,
with a complex and surprising structure mirroring the structure in
our deepest insights. We don't yet see this rich social structure in
the use of neural networks and deep learning. And so, I believe that
we are several decades (at least) from using deep learning to

http://neuralnetworksanddeeplearning.com/sai.html


21.6.18, 22(00Neural networks and deep learning

Page 70 of 70http://neuralnetworksanddeeplearning.com/chap6.html

develop general AI.

I've gone to a lot of trouble to construct an argument which is
tentative, perhaps seems rather obvious, and which has an
indefinite conclusion. This will no doubt frustrate people who crave
certainty. Reading around online, I see many people who loudly
assert very definite, very strongly held opinions about AI, often on
the basis of flimsy reasoning and non-existent evidence. My frank
opinion is this: it's too early to say. As the old joke goes, if you ask a
scientist how far away some discovery is and they say "10 years" (or
more), what they mean is "I've got no idea". AI, like controlled
fusion and a few other technologies, has been 10 years away for 60
plus years. On the flipside, what we definitely do have in deep
learning is a powerful technique whose limits have not yet been
found, and many wide-open fundamental problems. That's an
exciting creative opportunity.

In academic work, please cite this book as: Michael A. Nielsen, "Neural Networks and Deep Learning",
Determination Press, 2015 

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. This means
you're free to copy, share, and build on this book, but not to sell it. If you're interested in commercial use, please
contact me.

Last update: Sat Dec2 09:09:08 2017

http://creativecommons.org/licenses/by-nc/3.0/deed.en_GB
mailto:mn@michaelnielsen.org
http://creativecommons.org/licenses/by-nc/3.0/deed.en_GB

