
21.6.18, 21(58Neural networks and deep learning

Page 1 of 29http://neuralnetworksanddeeplearning.com/chap2.html

In the last chapter we saw how neural networks can learn their
weights and biases using the gradient descent algorithm. There was,
however, a gap in our explanation: we didn't discuss how to
compute the gradient of the cost function. That's quite a gap! In this
chapter I'll explain a fast algorithm for computing such gradients,
an algorithm known as backpropagation.

The backpropagation algorithm was originally introduced in the
1970s, but its importance wasn't fully appreciated until a famous
1986 paper by David Rumelhart, Geoffrey Hinton, and Ronald
Williams. That paper describes several neural networks where
backpropagation works far faster than earlier approaches to
learning, making it possible to use neural nets to solve problems
which had previously been insoluble. Today, the backpropagation
algorithm is the workhorse of learning in neural networks.

This chapter is more mathematically involved than the rest of the
book. If you're not crazy about mathematics you may be tempted to
skip the chapter, and to treat backpropagation as a black box whose
details you're willing to ignore. Why take the time to study those
details?

The reason, of course, is understanding. At the heart of
backpropagation is an expression for the partial derivative of
the cost function with respect to any weight (or bias) in the
network. The expression tells us how quickly the cost changes when
we change the weights and biases. And while the expression is
somewhat complex, it also has a beauty to it, with each element
having a natural, intuitive interpretation. And so backpropagation
isn't just a fast algorithm for learning. It actually gives us detailed

CHAPTER 2

How the backpropagation algorithm works

Neural Networks and Deep Learning
What this book is about
On the exercises and problems
Using neural nets to recognize
handwritten digits
How the backpropagation
algorithm works
Improving the way neural
networks learn
A visual proof that neural nets can
compute any function
Why are deep neural networks
hard to train?
Deep learning
Appendix: Is there a simple
algorithm for intelligence?
Acknowledgements
Frequently Asked Questions

If you benefit from the book, please
make a small donation. I suggest $5,
but you can choose the amount.

Alternately, you can make a
donation by sending me Bitcoin, at
address
1Kd6tXH5SDAmiFb49J9hknG5pqj7KStSAx

Sponsors

Thanks to all the supporters who
made the book possible, with
especial thanks to Pavel Dudrenov.

∂C/∂w
C w b

http://neuralnetworksanddeeplearning.com/chap1.html
http://www.nature.com/nature/journal/v323/n6088/pdf/323533a0.pdf
http://en.wikipedia.org/wiki/David_Rumelhart
http://www.cs.toronto.edu/~hinton/
http://en.wikipedia.org/wiki/Ronald_J._Williams
http://neuralnetworksanddeeplearning.com/chap2.html
http://neuralnetworksanddeeplearning.com/chap2.html
http://neuralnetworksanddeeplearning.com/index.html
http://neuralnetworksanddeeplearning.com/about.html
http://neuralnetworksanddeeplearning.com/exercises_and_problems.html
http://neuralnetworksanddeeplearning.com/chap1.html
http://neuralnetworksanddeeplearning.com/chap2.html
http://neuralnetworksanddeeplearning.com/chap3.html
http://neuralnetworksanddeeplearning.com/chap4.html
http://neuralnetworksanddeeplearning.com/chap5.html
http://neuralnetworksanddeeplearning.com/chap6.html
http://neuralnetworksanddeeplearning.com/sai.html
http://neuralnetworksanddeeplearning.com/acknowledgements.html
http://neuralnetworksanddeeplearning.com/faq.html
http://gsquaredcapital.com/
http://www.tineye.com/
http://www.visionsmarts.com/
http://neuralnetworksanddeeplearning.com/supporters.html

21.6.18, 21(58Neural networks and deep learning

Page 2 of 29http://neuralnetworksanddeeplearning.com/chap2.html

insights into how changing the weights and biases changes the
overall behaviour of the network. That's well worth studying in
detail.

With that said, if you want to skim the chapter, or jump straight to
the next chapter, that's fine. I've written the rest of the book to be
accessible even if you treat backpropagation as a black box. There
are, of course, points later in the book where I refer back to results
from this chapter. But at those points you should still be able to
understand the main conclusions, even if you don't follow all the
reasoning.

Warm up: a fast matrix-based approach
to computing the output from a neural
network
Before discussing backpropagation, let's warm up with a fast
matrix-based algorithm to compute the output from a neural
network. We actually already briefly saw this algorithm near the
end of the last chapter, but I described it quickly, so it's worth
revisiting in detail. In particular, this is a good way of getting
comfortable with the notation used in backpropagation, in a
familiar context.

Let's begin with a notation which lets us refer to weights in the
network in an unambiguous way. We'll use to denote the weight
for the connection from the neuron in the layer to the
neuron in the layer. So, for example, the diagram below shows
the weight on a connection from the fourth neuron in the second
layer to the second neuron in the third layer of a network:

Thanks also to all the contributors to
the Bugfinder Hall of Fame.

Resources
Michael Nielsen on Twitter

Book FAQ

Code repository

Michael Nielsen's project
announcement mailing list

Deep Learning, book by Ian
Goodfellow, Yoshua Bengio, and
Aaron Courville

cognitivemedium.com

By Michael Nielsen / Dec 2017

wl
jk

k th (l − 1)th j th

l th

http://neuralnetworksanddeeplearning.com/chap2.html#warm_up_a_fast_matrix-based_approach_to_computing_the_output_from_a_neural_network
http://neuralnetworksanddeeplearning.com/chap1.html#implementing_our_network_to_classify_digits
http://neuralnetworksanddeeplearning.com/bugfinder.html
https://twitter.com/michael_nielsen
http://neuralnetworksanddeeplearning.com/faq.html
https://github.com/mnielsen/neural-networks-and-deep-learning
http://eepurl.com/0Xxjb
http://www.deeplearningbook.org/
http://cognitivemedium.com/
http://michaelnielsen.org/
http://michaelnielsen.org/

21.6.18, 21(58Neural networks and deep learning

Page 3 of 29http://neuralnetworksanddeeplearning.com/chap2.html

This notation is cumbersome at first, and it does take some work to
master. But with a little effort you'll find the notation becomes easy
and natural. One quirk of the notation is the ordering of the and
indices. You might think that it makes more sense to use to refer to
the input neuron, and to the output neuron, not vice versa, as is
actually done. I'll explain the reason for this quirk below.

We use a similar notation for the network's biases and activations.
Explicitly, we use for the bias of the neuron in the layer.
And we use for the activation of the neuron in the layer. The
following diagram shows examples of these notations in use:

With these notations, the activation of the neuron in the
layer is related to the activations in the layer by the
equation (compare Equation (4) and surrounding discussion in the
last chapter)

j k
j

k

bl
j j th l th

al
j j th l th

al
j j th l th

(l − 1)th

= σ (+) ,al
j ∑

k
wl

jkal− 1
k bl

j (23)

21.6.18, 21(58Neural networks and deep learning

Page 4 of 29http://neuralnetworksanddeeplearning.com/chap2.html

where the sum is over all neurons in the layer. To rewrite
this expression in a matrix form we define a weight matrix for
each layer, . The entries of the weight matrix are just the weights
connecting to the layer of neurons, that is, the entry in the row
and column is . Similarly, for each layer we define a bias
vector, . You can probably guess how this works - the components
of the bias vector are just the values , one component for each
neuron in the layer. And finally, we define an activation vector
whose components are the activations .

The last ingredient we need to rewrite (23) in a matrix form is the
idea of vectorizing a function such as . We met vectorization briefly
in the last chapter, but to recap, the idea is that we want to apply a
function such as to every element in a vector . We use the
obvious notation to denote this kind of elementwise application
of a function. That is, the components of are just .
As an example, if we have the function then the vectorized
form of has the effect

that is, the vectorized just squares every element of the vector.

With these notations in mind, Equation (23) can be rewritten in the
beautiful and compact vectorized form

This expression gives us a much more global way of thinking about
how the activations in one layer relate to activations in the previous
layer: we just apply the weight matrix to the activations, then add
the bias vector, and finally apply the function*. That global view is
often easier and more succinct (and involves fewer indices!) than
the neuron-by-neuron view we've taken to now. Think of it as a way
of escaping index hell, while remaining precise about what's going

k (l − 1)th

wl

l wl

l th j th

k th wl
jk l

bl

bl
j

l th al

al
j

σ

σ v
σ(v)

σ(v) σ(v = σ())j vj

f (x) = x2

f

f ([]) = [] = [] ,2
3

f (2)
f (3)

4
9

(24)

f

= σ(+).al wlal− 1 bl (25)

σ *By the way, it's this expression that motivates
the quirk in the notation mentioned earlier.
If we used to index the input neuron, and to
index the output neuron, then we'd need to
replace the weight matrix in Equation (25) by the
transpose of the weight matrix. That's a small

wl
jk

j k

21.6.18, 21(58Neural networks and deep learning

Page 5 of 29http://neuralnetworksanddeeplearning.com/chap2.html

on. The expression is also useful in practice, because most matrix
libraries provide fast ways of implementing matrix multiplication,
vector addition, and vectorization. Indeed, the code in the last
chapter made implicit use of this expression to compute the
behaviour of the network.

When using Equation (25) to compute , we compute the
intermediate quantity along the way. This quantity
turns out to be useful enough to be worth naming: we call the
weighted input to the neurons in layer . We'll make considerable
use of the weighted input later in the chapter. Equation (25) is
sometimes written in terms of the weighted input, as . It's
also worth noting that has components , that
is, is just the weighted input to the activation function for neuron
 in layer .

The two assumptions we need about
the cost function
The goal of backpropagation is to compute the partial derivatives

 and of the cost function with respect to any weight
or bias in the network. For backpropagation to work we need to
make two main assumptions about the form of the cost function.
Before stating those assumptions, though, it's useful to have an
example cost function in mind. We'll use the quadratic cost function
from last chapter (c.f. Equation (6)). In the notation of the last
section, the quadratic cost has the form

where: is the total number of training examples; the sum is over
individual training examples, ; is the corresponding
desired output; denotes the number of layers in the network; and

change, but annoying, and we'd lose the easy
simplicity of saying (and thinking) "apply the
weight matrix to the activations".

al

≡ +zl wlal− 1 bl

zl

l
zl

= σ()al zl

zl = +zl
j ∑k wl

jkal− 1
k bl

j

zl
j

j l

∂C/∂w ∂C/∂b C w
b

C = ‖y(x) − (x) ,1
2n ∑

x
aL ‖2 (26)

n
x y = y(x)

L

http://neuralnetworksanddeeplearning.com/chap1.html#implementing_our_network_to_classify_digits

21.6.18, 21(58Neural networks and deep learning

Page 6 of 29http://neuralnetworksanddeeplearning.com/chap2.html

 is the vector of activations output from the network when
 is input.

Okay, so what assumptions do we need to make about our cost
function, , in order that backpropagation can be applied? The first
assumption we need is that the cost function can be written as an
average over cost functions for individual training
examples, . This is the case for the quadratic cost function, where
the cost for a single training example is . This
assumption will also hold true for all the other cost functions we'll
meet in this book.

The reason we need this assumption is because what
backpropagation actually lets us do is compute the partial
derivatives and for a single training example. We
then recover and by averaging over training examples.
In fact, with this assumption in mind, we'll suppose the training
example has been fixed, and drop the subscript, writing the cost

 as . We'll eventually put the back in, but for now it's a
notational nuisance that is better left implicit.

The second assumption we make about the cost is that it can be
written as a function of the outputs from the neural network:

For example, the quadratic cost function satisfies this requirement,
since the quadratic cost for a single training example may be
written as

= (x)aL aL

x

C

C = 1
n ∑x Cx Cx

x
= ‖y −Cx

1
2 aL ‖2

∂ /∂wCx ∂ /∂bCx

∂C/∂w ∂C/∂b

x x
Cx C x

x

C = ‖y − = (− ,1 L 2 1
j

2

21.6.18, 21(58Neural networks and deep learning

Page 7 of 29http://neuralnetworksanddeeplearning.com/chap2.html

and thus is a function of the output activations. Of course, this cost
function also depends on the desired output , and you may wonder
why we're not regarding the cost also as a function of . Remember,
though, that the input training example is fixed, and so the output

 is also a fixed parameter. In particular, it's not something we can
modify by changing the weights and biases in any way, i.e., it's not
something which the neural network learns. And so it makes sense
to regard as a function of the output activations alone, with
merely a parameter that helps define that function.

The Hadamard product,
The backpropagation algorithm is based on common linear
algebraic operations - things like vector addition, multiplying a
vector by a matrix, and so on. But one of the operations is a little
less commonly used. In particular, suppose and are two vectors
of the same dimension. Then we use to denote the elementwise
product of the two vectors. Thus the components of are just

. As an example,

This kind of elementwise multiplication is sometimes called the
Hadamard product or Schur product. We'll refer to it as the
Hadamard product. Good matrix libraries usually provide fast
implementations of the Hadamard product, and that comes in
handy when implementing backpropagation.

The four fundamental equations
behind backpropagation

C = ‖y − = (− ,1
2 aL ‖2 1

2 ∑
j

yj aL
j)2 (27)

y
y

x
y

C aL y

s ⊙ t

s t
s ⊙ t

s ⊙ t
(s ⊙ t =)j sjtj

[] ⊙ [] = [] = [] .1
2

3
4

1 ∗ 3
2 ∗ 4

3
8

(28)

21.6.18, 21(58Neural networks and deep learning

Page 8 of 29http://neuralnetworksanddeeplearning.com/chap2.html

Backpropagation is about understanding how changing the weights
and biases in a network changes the cost function. Ultimately, this
means computing the partial derivatives and . But to
compute those, we first introduce an intermediate quantity, ,
which we call the error in the neuron in the layer.
Backpropagation will give us a procedure to compute the error ,
and then will relate to and .

To understand how the error is defined, imagine there is a demon
in our neural network:

The demon sits at the neuron in layer . As the input to the
neuron comes in, the demon messes with the neuron's operation. It
adds a little change to the neuron's weighted input, so that
instead of outputting , the neuron instead outputs .
This change propagates through later layers in the network, finally
causing the overall cost to change by an amount .

Now, this demon is a good demon, and is trying to help you
improve the cost, i.e., they're trying to find a which makes the
cost smaller. Suppose has a large value (either positive or

negative). Then the demon can lower the cost quite a bit by
choosing to have the opposite sign to . By contrast, if is

close to zero, then the demon can't improve the cost much at all by
perturbing the weighted input . So far as the demon can tell, the
neuron is already pretty near optimal*. And so there's a heuristic

∂C/∂wl
jk ∂C/∂bl

j

δl
j

j th l th

δl
j

δl
j ∂C/∂wl

jk ∂C/∂bl
j

j th l

Δzl
j

σ()zl
j σ(+ Δ)zl

j zl
j

Δ∂C
∂zl

j
zl

j

Δzl
j

∂C
∂zl

j

Δzl
j

∂C
∂zl

j

∂C
∂zl

j

zl
j

*This is only the case for small changes , of
course. We'll assume that the demon is

Δzl
j

21.6.18, 21(58Neural networks and deep learning

Page 9 of 29http://neuralnetworksanddeeplearning.com/chap2.html

sense in which is a measure of the error in the neuron.

Motivated by this story, we define the error of neuron in layer
by

As per our usual conventions, we use to denote the vector of
errors associated with layer . Backpropagation will give us a way of
computing for every layer, and then relating those errors to the
quantities of real interest, and .

You might wonder why the demon is changing the weighted input
. Surely it'd be more natural to imagine the demon changing the

output activation , with the result that we'd be using as our

measure of error. In fact, if you do this things work out quite
similarly to the discussion below. But it turns out to make the
presentation of backpropagation a little more algebraically
complicated. So we'll stick with as our measure of error*.

Plan of attack: Backpropagation is based around four
fundamental equations. Together, those equations give us a way of
computing both the error and the gradient of the cost function. I
state the four equations below. Be warned, though: you shouldn't
expect to instantaneously assimilate the equations. Such an
expectation will lead to disappointment. In fact, the
backpropagation equations are so rich that understanding them
well requires considerable time and patience as you gradually delve
deeper into the equations. The good news is that such patience is
repaid many times over. And so the discussion in this section is
merely a beginning, helping you on the way to a thorough
understanding of the equations.

Here's a preview of the ways we'll delve more deeply into the

constrained to make such small changes.∂C
∂zl

j

δl
j j l

≡ .δl
j

∂C
∂zl

j
(29)

δl

l
δl

∂C/∂wl
jk ∂C/∂bl

j

zl
j

al
j

∂C
∂al

j

=δl
j

∂C
∂zl

j
*In classification problems like MNIST the term
"error" is sometimes used to mean the
classification failure rate. E.g., if the neural net
correctly classifies 96.0 percent of the digits,
then the error is 4.0 percent. Obviously, this has
quite a different meaning from our vectors. In
practice, you shouldn't have trouble telling
which meaning is intended in any given usage.

δδl

21.6.18, 21(58Neural networks and deep learning

Page 10 of 29http://neuralnetworksanddeeplearning.com/chap2.html

equations later in the chapter: I'll give a short proof of the
equations, which helps explain why they are true; we'll restate the
equations in algorithmic form as pseudocode, and see how the
pseudocode can be implemented as real, running Python code; and,
in the final section of the chapter, we'll develop an intuitive picture
of what the backpropagation equations mean, and how someone
might discover them from scratch. Along the way we'll return
repeatedly to the four fundamental equations, and as you deepen
your understanding those equations will come to seem comfortable
and, perhaps, even beautiful and natural.

An equation for the error in the output layer, : The
components of are given by

This is a very natural expression. The first term on the right, ,
just measures how fast the cost is changing as a function of the
output activation. If, for example, doesn't depend much on a
particular output neuron, , then will be small, which is what
we'd expect. The second term on the right, , measures how
fast the activation function is changing at .

Notice that everything in (BP1) is easily computed. In particular, we
compute while computing the behaviour of the network, and it's
only a small additional overhead to compute . The exact form
of will, of course, depend on the form of the cost function.
However, provided the cost function is known there should be little
trouble computing . For example, if we're using the quadratic
cost function then , and so ,
which obviously is easily computable.

Equation (BP1) is a componentwise expression for . It's a
perfectly good expression, but not the matrix-based form we want

δL

δL

= ().δL
j

∂C
∂aL

j
σ ′ zL

j (BP1)

∂C/∂aL
j

j th

C
j δL

j

()σ ′ zL
j

σ zL
j

zL
j

()σ ′ zL
j

∂C/∂aL
j

∂C/∂aL
j

C = (−1
2 ∑j yj aL

j)2 ∂C/∂ = (−)aL
j aL

j yj

δL

21.6.18, 21(58Neural networks and deep learning

Page 11 of 29http://neuralnetworksanddeeplearning.com/chap2.html

for backpropagation. However, it's easy to rewrite the equation in a
matrix-based form, as

Here, is defined to be a vector whose components are the
partial derivatives . You can think of as expressing the
rate of change of with respect to the output activations. It's easy
to see that Equations (BP1a) and (BP1) are equivalent, and for that
reason from now on we'll use (BP1) interchangeably to refer to both
equations. As an example, in the case of the quadratic cost we have

, and so the fully matrix-based form of (BP1)
becomes

As you can see, everything in this expression has a nice vector form,
and is easily computed using a library such as Numpy.

An equation for the error in terms of the error in the
next layer, : In particular

where is the transpose of the weight matrix for the
 layer. This equation appears complicated, but each element

has a nice interpretation. Suppose we know the error at the
 layer. When we apply the transpose weight matrix, ,

we can think intuitively of this as moving the error backward
through the network, giving us some sort of measure of the error at
the output of the layer. We then take the Hadamard product

. This moves the error backward through the activation
function in layer , giving us the error in the weighted input to
layer .

By combining (BP2) with (BP1) we can compute the error for any
layer in the network. We start by using (BP1) to compute , then

= C ⊙ ().δL ∇a σ ′ zL (BP1a)

C∇a

∂C/∂aL
j C∇a

C

C = (− y)∇a aL

= (− y) ⊙ ().δL aL σ ′ zL (30)

δl

δl+ 1

= (() ⊙ (),δl wl+ 1)T δl+ 1 σ ′ zl (BP2)

(wl+ 1)T wl+ 1

(l + 1)th

δl+ 1

l + 1th (wl+ 1)T

l th

⊙ ()σ ′ zl

l δl

l

δl

δL

21.6.18, 21(58Neural networks and deep learning

Page 12 of 29http://neuralnetworksanddeeplearning.com/chap2.html

apply Equation (BP2) to compute , then Equation (BP2) again
to compute , and so on, all the way back through the network.

An equation for the rate of change of the cost with respect
to any bias in the network: In particular:

That is, the error is exactly equal to the rate of change .
This is great news, since (BP1) and (BP2) have already told us how
to compute . We can rewrite (BP3) in shorthand as

where it is understood that is being evaluated at the same neuron
as the bias .

An equation for the rate of change of the cost with respect
to any weight in the network: In particular:

This tells us how to compute the partial derivatives in terms
of the quantities and , which we already know how to
compute. The equation can be rewritten in a less index-heavy
notation as

where it's understood that is the activation of the neuron input
to the weight , and is the error of the neuron output from the
weight . Zooming in to look at just the weight , and the two
neurons connected by that weight, we can depict this as:

δL− 1

δL− 2

= .∂C
∂bl

j
δl

j (BP3)

δl
j ∂C/∂bl

j

δl
j

= δ,∂C
∂b

(31)

δ
b

= .∂C
∂wl

jk
al− 1

k δl
j (BP4)

∂C/∂wl
jk

δl al− 1

= ,∂C
∂w

ainδout (32)

ain

w δout

w w

21.6.18, 21(58Neural networks and deep learning

Page 13 of 29http://neuralnetworksanddeeplearning.com/chap2.html

A nice consequence of Equation (32) is that when the activation
is small, , the gradient term will also tend to be small.
In this case, we'll say the weight learns slowly, meaning that it's not
changing much during gradient descent. In other words, one
consequence of (BP4) is that weights output from low-activation
neurons learn slowly.

There are other insights along these lines which can be obtained
from (BP1)-(BP4). Let's start by looking at the output layer.
Consider the term in (BP1). Recall from the graph of the
sigmoid function in the last chapter that the function becomes
very flat when is approximately or . When this occurs we
will have . And so the lesson is that a weight in the final
layer will learn slowly if the output neuron is either low activation (

) or high activation (). In this case it's common to say the
output neuron has saturated and, as a result, the weight has
stopped learning (or is learning slowly). Similar remarks hold also
for the biases of output neuron.

We can obtain similar insights for earlier layers. In particular, note
the term in (BP2). This means that is likely to get small if
the neuron is near saturation. And this, in turn, means that any
weights input to a saturated neuron will learn slowly*.

Summing up, we've learnt that a weight will learn slowly if either
the input neuron is low-activation, or if the output neuron has
saturated, i.e., is either high- or low-activation.

None of these observations is too greatly surprising. Still, they help
improve our mental model of what's going on as a neural network
learns. Furthermore, we can turn this type of reasoning around. The

ain

≈ 0ain ∂C/∂w

()σ ′ zL
j

σ
σ()zL

j 0 1
() ≈ 0σ ′ zL

j

≈ 0 ≈ 1

()σ ′ zl δl
j

*This reasoning won't hold if has large
enough entries to compensate for the smallness
of . But I'm speaking of the general
tendency.

wl+ 1T δl+ 1

()σ ′ zl
j

http://neuralnetworksanddeeplearning.com/chap1.html#sigmoid_graph

21.6.18, 21(58Neural networks and deep learning

Page 14 of 29http://neuralnetworksanddeeplearning.com/chap2.html

four fundamental equations turn out to hold for any activation
function, not just the standard sigmoid function (that's because, as
we'll see in a moment, the proofs don't use any special properties of

). And so we can use these equations to design activation functions
which have particular desired learning properties. As an example to
give you the idea, suppose we were to choose a (non-sigmoid)
activation function so that is always positive, and never gets
close to zero. That would prevent the slow-down of learning that
occurs when ordinary sigmoid neurons saturate. Later in the book
we'll see examples where this kind of modification is made to the
activation function. Keeping the four equations (BP1)-(BP4) in
mind can help explain why such modifications are tried, and what
impact they can have.

Problem

Alternate presentation of the equations of
backpropagation: I've stated the equations of
backpropagation (notably (BP1) and (BP2)) using the
Hadamard product. This presentation may be disconcerting if
you're unused to the Hadamard product. There's an alternative
approach, based on conventional matrix multiplication, which
some readers may find enlightening. (1) Show that (BP1) may
be rewritten as

σ

σ σ ′

= () C,L ′ L
a

21.6.18, 21(58Neural networks and deep learning

Page 15 of 29http://neuralnetworksanddeeplearning.com/chap2.html

where is a square matrix whose diagonal entries are the
values , and whose off-diagonal entries are zero. Note
that this matrix acts on by conventional matrix
multiplication. (2) Show that (BP2) may be rewritten as

(3) By combining observations (1) and (2) show that

For readers comfortable with matrix multiplication this
equation may be easier to understand than (BP1) and (BP2).
The reason I've focused on (BP1) and (BP2) is because that
approach turns out to be faster to implement numerically.

Proof of the four fundamental
equations (optional)
We'll now prove the four fundamental equations (BP1)-(BP4). All
four are consequences of the chain rule from multivariable calculus.
If you're comfortable with the chain rule, then I strongly encourage
you to attempt the derivation yourself before reading on.

Let's begin with Equation (BP1), which gives an expression for the
output error, . To prove this equation, recall that by definition

Applying the chain rule, we can re-express the partial derivative
above in terms of partial derivatives with respect to the output
activations,

= () C,δL Σ′ zL ∇a (33)

()Σ′ zL

()σ ′ zL
j

C∇a

= ()(.δl Σ′ zl wl+ 1)T δl+ 1 (34)

= ()(… ()(() Cδl Σ′ zl wl+ 1)T Σ′ zL− 1 wL)T Σ′ zL ∇a (35)

δL

= .δL
j

∂C
∂zL

j
(36)

= ,δL
j ∑

k

∂C
∂aL

k

∂aL
k

∂zL
j

(37)

21.6.18, 21(58Neural networks and deep learning

Page 16 of 29http://neuralnetworksanddeeplearning.com/chap2.html

where the sum is over all neurons in the output layer. Of course,
the output activation of the neuron depends only on the
weighted input for the neuron when . And so
vanishes when . As a result we can simplify the previous
equation to

Recalling that the second term on the right can be
written as , and the equation becomes

which is just (BP1), in component form.

Next, we'll prove (BP2), which gives an equation for the error in
terms of the error in the next layer, . To do this, we want to
rewrite in terms of . We can do this using
the chain rule,

where in the last line we have interchanged the two terms on the
right-hand side, and substituted the definition of . To evaluate
the first term on the last line, note that

Differentiating, we obtain

k
aL

k k th

zL
j j th k = j ∂ /∂aL

k zL
j

k ≠ j

= .δL
j

∂C
∂aL

j

∂aL
j

∂zL
j

(38)

= σ()aL
j zL

j

()σ ′ zL
j

= (),δL
j

∂C
∂aL

j
σ ′ zL

j (39)

δl

δl+ 1

= ∂C/∂δl
j zl

j = ∂C/∂δl+ 1
k zl+ 1

k

δl
j =

=

=

∂C
∂zl

j

∑
k

∂C
∂zl+ 1

k

∂zl+ 1
k

∂zl
j

,∑
k

∂zl+ 1
k

∂zl
j

δl+ 1
k

(40)

(41)

(42)

δl+ 1
k

= + = σ() + .zl+ 1
k ∑

j
wl+ 1

kj al
j bl+ 1

k ∑
j

wl+ 1
kj zl

j bl+ 1
k (43)

= ().
∂ l+ 1

′

21.6.18, 21(58Neural networks and deep learning

Page 17 of 29http://neuralnetworksanddeeplearning.com/chap2.html

Substituting back into (42) we obtain

This is just (BP2) written in component form.

The final two equations we want to prove are (BP3) and (BP4).
These also follow from the chain rule, in a manner similar to the
proofs of the two equations above. I leave them to you as an
exercise.

Exercise

Prove Equations (BP3) and (BP4).

That completes the proof of the four fundamental equations of
backpropagation. The proof may seem complicated. But it's really
just the outcome of carefully applying the chain rule. A little less
succinctly, we can think of backpropagation as a way of computing
the gradient of the cost function by systematically applying the
chain rule from multi-variable calculus. That's all there really is to
backpropagation - the rest is details.

The backpropagation algorithm
The backpropagation equations provide us with a way of computing
the gradient of the cost function. Let's explicitly write this out in the
form of an algorithm:

1. Input
: Set the corresponding activation for the input layer.

2. Feedforward: For each compute

= ().
∂zl+ 1

k

∂zl
j

wl+ 1
kj σ ′ zl

j (44)

= ().δl
j ∑

k
wl+ 1

kj δl+ 1
k σ ′ zl

j (45)

x a1

l = 2, 3, … , L = +zl wlal− 1 bl

Veniamin Morgenshtern
PS 5, problem 2-1.

21.6.18, 21(58Neural networks and deep learning

Page 18 of 29http://neuralnetworksanddeeplearning.com/chap2.html

and .

3. Output error
: Compute the vector .

4. Backpropagate the error: For each
compute .

5. Output: The gradient of the cost function is given by
 and .

Examining the algorithm you can see why it's called
backpropagation. We compute the error vectors backward,
starting from the final layer. It may seem peculiar that we're going
through the network backward. But if you think about the proof of
backpropagation, the backward movement is a consequence of the
fact that the cost is a function of outputs from the network. To
understand how the cost varies with earlier weights and biases we
need to repeatedly apply the chain rule, working backward through
the layers to obtain usable expressions.

Exercises

Backpropagation with a single modified neuron
Suppose we modify a single neuron in a feedforward network
so that the output from the neuron is given by ,
where is some function other than the sigmoid. How should
we modify the backpropagation algorithm in this case?

Backpropagation with linear neurons Suppose we
replace the usual non-linear function with
throughout the network. Rewrite the backpropagation
algorithm for this case.

As I've described it above, the backpropagation algorithm computes

= σ()al zl

δL = C ⊙ ()δL ∇a σ ′ zL

l = L − 1, L − 2, … , 2
= (() ⊙ ()δl wl+ 1)T δl+ 1 σ ′ zl

=∂C
∂wl

jk
al− 1

k δl
j =∂C

∂bl
j

δl
j

δl

f (+ b)∑j wjxj

f

σ σ(z) = z

21.6.18, 21(58Neural networks and deep learning

Page 19 of 29http://neuralnetworksanddeeplearning.com/chap2.html

the gradient of the cost function for a single training example,
. In practice, it's common to combine backpropagation with

a learning algorithm such as stochastic gradient descent, in which
we compute the gradient for many training examples. In particular,
given a mini-batch of training examples, the following algorithm
applies a gradient descent learning step based on that mini-batch:

1. Input a set of training examples

2. For each training example
: Set the corresponding input activation , and perform the

following steps:

Feedforward: For each compute
 and .

Output error
: Compute the vector .

Backpropagate the error: For each
 compute

.

3. Gradient descent: For each update the
weights according to the rule , and
the biases according to the rule .

Of course, to implement stochastic gradient descent in practice you
also need an outer loop generating mini-batches of training
examples, and an outer loop stepping through multiple epochs of
training. I've omitted those for simplicity.

The code for backpropagation
Having understood backpropagation in the abstract, we can now

C = Cx

m

x ax,1

l = 2, 3, … , L
= +zx,l wlax,l− 1 bl = σ()ax,l zx,l

δx,L = ⊙ ()δx,L ∇aCx σ ′ zx,L

l = L − 1, L − 2, … , 2
= (() ⊙ ()δx,l wl+ 1)T δx,l+ 1 σ ′ zx,l

l = L, L − 1, … , 2
→ − (wl wl η

m ∑x δx,l ax,l− 1)T

→ −bl bl η
m ∑x δx,l

21.6.18, 21(58Neural networks and deep learning

Page 20 of 29http://neuralnetworksanddeeplearning.com/chap2.html

understand the code used in the last chapter to implement
backpropagation. Recall from that chapter that the code was
contained in the update_mini_batch and backprop methods of the
Network class. The code for these methods is a direct translation of
the algorithm described above. In particular, the update_mini_batch
method updates the Network's weights and biases by computing the
gradient for the current mini_batch of training examples:

class Network(object):
...
 def update_mini_batch(self, mini_batch, eta):
 """Update the network's weights and biases by applying
 gradient descent using backpropagation to a single mini batch.

 The "mini_batch" is a list of tuples "(x, y)", and "eta"

 is the learning rate."""

 nabla_b = [np.zeros(b.shape) for b in self.biases]
 nabla_w = [np.zeros(w.shape) for w in self.weights]
 for x, y in mini_batch:
 delta_nabla_b, delta_nabla_w = self.backprop(x, y)
 nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
 nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
 self.weights = [w-(eta/len(mini_batch))*nw
 for w, nw in zip(self.weights, nabla_w)]
 self.biases = [b-(eta/len(mini_batch))*nb
 for b, nb in zip(self.biases, nabla_b)]

Most of the work is done by the line delta_nabla_b, delta_nabla_w
= self.backprop(x, y) which uses the backprop method to figure
out the partial derivatives and . The backprop
method follows the algorithm in the last section closely. There is
one small change - we use a slightly different approach to indexing
the layers. This change is made to take advantage of a feature of
Python, namely the use of negative list indices to count backward
from the end of a list, so, e.g., l[-3] is the third last entry in a list l.
The code for backprop is below, together with a few helper
functions, which are used to compute the function, the derivative

, and the derivative of the cost function. With these inclusions you
should be able to understand the code in a self-contained way. If
something's tripping you up, you may find it helpful to consult the
original description (and complete listing) of the code.

class Network(object):

∂ /∂Cx bl
j ∂ /∂Cx wl

jk

σ
σ ′

http://neuralnetworksanddeeplearning.com/chap1.html#implementing_our_network_to_classify_digits
http://neuralnetworksanddeeplearning.com/chap1.html#implementing_our_network_to_classify_digits

21.6.18, 21(58Neural networks and deep learning

Page 21 of 29http://neuralnetworksanddeeplearning.com/chap2.html

...
 def backprop(self, x, y):
 """Return a tuple "(nabla_b, nabla_w)" representing the
 gradient for the cost function C_x. "nabla_b" and

 "nabla_w" are layer-by-layer lists of numpy arrays, similar

 to "self.biases" and "self.weights"."""

 nabla_b = [np.zeros(b.shape) for b in self.biases]
 nabla_w = [np.zeros(w.shape) for w in self.weights]
 # feedforward
 activation = x
 activations = [x] # list to store all the activations, layer by layer
 zs = [] # list to store all the z vectors, layer by layer
 for b, w in zip(self.biases, self.weights):
 z = np.dot(w, activation)+b
 zs.append(z)
 activation = sigmoid(z)
 activations.append(activation)
 # backward pass
 delta = self.cost_derivative(activations[-1], y) * \
 sigmoid_prime(zs[-1])
 nabla_b[-1] = delta
 nabla_w[-1] = np.dot(delta, activations[-2].transpose())
 # Note that the variable l in the loop below is used a little
 # differently to the notation in Chapter 2 of the book. Here,
 # l = 1 means the last layer of neurons, l = 2 is the
 # second-last layer, and so on. It's a renumbering of the
 # scheme in the book, used here to take advantage of the fact
 # that Python can use negative indices in lists.
 for l in xrange(2, self.num_layers):
 z = zs[-l]
 sp = sigmoid_prime(z)
 delta = np.dot(self.weights[-l+1].transpose(), delta) * sp
 nabla_b[-l] = delta
 nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())
 return (nabla_b, nabla_w)

...

 def cost_derivative(self, output_activations, y):
 """Return the vector of partial derivatives \partial C_x /
 \partial a for the output activations."""

 return (output_activations-y)

def sigmoid(z):
 """The sigmoid function."""
 return 1.0/(1.0+np.exp(-z))

def sigmoid_prime(z):
 """Derivative of the sigmoid function."""
 return sigmoid(z)*(1-sigmoid(z))

Problem

Fully matrix-based approach to backpropagation over

21.6.18, 21(58Neural networks and deep learning

Page 22 of 29http://neuralnetworksanddeeplearning.com/chap2.html

a mini-batch Our implementation of stochastic gradient
descent loops over training examples in a mini-batch. It's
possible to modify the backpropagation algorithm so that it
computes the gradients for all training examples in a mini-
batch simultaneously. The idea is that instead of beginning
with a single input vector, , we can begin with a matrix

 whose columns are the vectors in the mini-
batch. We forward-propagate by multiplying by the weight
matrices, adding a suitable matrix for the bias terms, and
applying the sigmoid function everywhere. We backpropagate
along similar lines. Explicitly write out pseudocode for this
approach to the backpropagation algorithm. Modify network.py
so that it uses this fully matrix-based approach. The advantage
of this approach is that it takes full advantage of modern
libraries for linear algebra. As a result it can be quite a bit
faster than looping over the mini-batch. (On my laptop, for
example, the speedup is about a factor of two when run on
MNIST classification problems like those we considered in the
last chapter.) In practice, all serious libraries for
backpropagation use this fully matrix-based approach or some
variant.

In what sense is backpropagation a
fast algorithm?
In what sense is backpropagation a fast algorithm? To answer this
question, let's consider another approach to computing the
gradient. Imagine it's the early days of neural networks research.
Maybe it's the 1950s or 1960s, and you're the first person in the
world to think of using gradient descent to learn! But to make the
idea work you need a way of computing the gradient of the cost
function. You think back to your knowledge of calculus, and decide

x
X = […]x1x2 xm

21.6.18, 21(58Neural networks and deep learning

Page 23 of 29http://neuralnetworksanddeeplearning.com/chap2.html

to see if you can use the chain rule to compute the gradient. But
after playing around a bit, the algebra looks complicated, and you
get discouraged. So you try to find another approach. You decide to
regard the cost as a function of the weights alone (we'll get
back to the biases in a moment). You number the weights ,
and want to compute for some particular weight . An
obvious way of doing that is to use the approximation

where is a small positive number, and is the unit vector in
the direction. In other words, we can estimate by
computing the cost for two slightly different values of , and
then applying Equation (46). The same idea will let us compute the
partial derivatives with respect to the biases.

This approach looks very promising. It's simple conceptually, and
extremely easy to implement, using just a few lines of code.
Certainly, it looks much more promising than the idea of using the
chain rule to compute the gradient!

Unfortunately, while this approach appears promising, when you
implement the code it turns out to be extremely slow. To
understand why, imagine we have a million weights in our network.
Then for each distinct weight we need to compute in
order to compute . That means that to compute the gradient
we need to compute the cost function a million different times,
requiring a million forward passes through the network (per
training example). We need to compute as well, so that's a
total of a million and one passes through the network.

What's clever about backpropagation is that it enables us to
simultaneously compute all the partial derivatives using just
one forward pass through the network, followed by one backward

C = C(w)
, , …w1 w2

∂C/∂wj wj

≈ ,∂C
∂wj

C(w + ϵ) − C(w)ej

ϵ
(46)

ϵ > 0 ej

j th ∂C/∂wj

C wj

∂C/∂b

wj C(w + ϵ)ej

∂C/∂wj

C(w)

∂C/∂wj

21.6.18, 21(58Neural networks and deep learning

Page 24 of 29http://neuralnetworksanddeeplearning.com/chap2.html

pass through the network. Roughly speaking, the computational
cost of the backward pass is about the same as the forward pass*.
And so the total cost of backpropagation is roughly the same as
making just two forward passes through the network. Compare that
to the million and one forward passes we needed for the approach
based on (46)! And so even though backpropagation appears
superficially more complex than the approach based on (46), it's
actually much, much faster.

This speedup was first fully appreciated in 1986, and it greatly
expanded the range of problems that neural networks could solve.
That, in turn, caused a rush of people using neural networks. Of
course, backpropagation is not a panacea. Even in the late 1980s
people ran up against limits, especially when attempting to use
backpropagation to train deep neural networks, i.e., networks with
many hidden layers. Later in the book we'll see how modern
computers and some clever new ideas now make it possible to use
backpropagation to train such deep neural networks.

Backpropagation: the big picture
As I've explained it, backpropagation presents two mysteries. First,
what's the algorithm really doing? We've developed a picture of the
error being backpropagated from the output. But can we go any
deeper, and build up more intuition about what is going on when
we do all these matrix and vector multiplications? The second
mystery is how someone could ever have discovered
backpropagation in the first place? It's one thing to follow the steps
in an algorithm, or even to follow the proof that the algorithm
works. But that doesn't mean you understand the problem so well
that you could have discovered the algorithm in the first place. Is
there a plausible line of reasoning that could have led you to
discover the backpropagation algorithm? In this section I'll address

*This should be plausible, but it requires some
analysis to make a careful statement. It's
plausible because the dominant computational
cost in the forward pass is multiplying by the
weight matrices, while in the backward pass it's
multiplying by the transposes of the weight
matrices. These operations obviously have
similar computational cost.

21.6.18, 21(58Neural networks and deep learning

Page 25 of 29http://neuralnetworksanddeeplearning.com/chap2.html

both these mysteries.

To improve our intuition about what the algorithm is doing, let's
imagine that we've made a small change to some weight in the
network, :

That change in weight will cause a change in the output activation
from the corresponding neuron:

That, in turn, will cause a change in all the activations in the next
layer:

Those changes will in turn cause changes in the next layer, and then

Δwl
jk

wl
jk

21.6.18, 21(58Neural networks and deep learning

Page 26 of 29http://neuralnetworksanddeeplearning.com/chap2.html

the next, and so on all the way through to causing a change in the
final layer, and then in the cost function:

The change in the cost is related to the change in the
weight by the equation

This suggests that a possible approach to computing is to

carefully track how a small change in propagates to cause a
small change in . If we can do that, being careful to express
everything along the way in terms of easily computable quantities,
then we should be able to compute .

Let's try to carry this out. The change causes a small change
 in the activation of the neuron in the layer. This change is

given by

The change in activation will cause changes in all the
activations in the next layer, i.e., the layer. We'll
concentrate on the way just a single one of those activations is
affected, say ,

ΔC Δwl
jk

ΔC ≈ Δ .∂C
∂wl

jk
wl

jk (47)

∂C
∂wl

jk

wl
jk

C

∂C/∂wl
jk

Δwl
jk

Δal
j j th l th

Δ ≈ Δ .al
j

∂al
j

∂wl
jk

wl
jk (48)

Δal
j

(l + 1)th

al+ 1
q

21.6.18, 21(58Neural networks and deep learning

Page 27 of 29http://neuralnetworksanddeeplearning.com/chap2.html

In fact, it'll cause the following change:

Substituting in the expression from Equation (48), we get:

(47)

(53)

Δ ≈ Δ .al+ 1
q

∂al+ 1
q

∂al
j

al
j (49)

Δ ≈ Δ .al+ 1
q

∂al+ 1
q

∂al
j

∂al
j

∂wl
jk

wl
jk (50)

Δal+ 1
q wl

jk C , , … , ,al
j al+ 1

q aL− 1
n aL

m

ΔC ≈ … Δ ,∂C
∂aL

m

∂aL
m

∂aL− 1
n

∂aL− 1
n

∂aL− 2
p

∂al+ 1
q

∂al
j

∂al
j

∂wl
jk

wl
jk (51)

∂a/∂a∂C/∂aL
mCwl

jk C

ΔC ≈ … Δ ,∑
mnp…q

∂C
∂aL

m

∂aL
m

∂aL− 1
n

∂aL− 1
n

∂aL− 2
p

∂al+ 1
q

∂al
j

∂al
j

∂wl
jk

wl
jk (52)

= … .∂C
∂wl

jk
∑

mnp…q

∂C
∂aL

m

∂aL
m

∂aL− 1
n

∂aL− 1
n

∂aL− 2
p

∂al+ 1
q

∂al
j

∂al
j

∂wl
jk

(53)

C∂ /∂al
j wl

jk ∂C/∂wl
jk

21.6.18, 21(58Neural networks and deep learning

Page 28 of 29http://neuralnetworksanddeeplearning.com/chap2.html

What I've been providing up to now is a heuristic argument, a way
of thinking about what's going on when you perturb a weight in a
network. Let me sketch out a line of thinking you could use to
further develop this argument. First, you could derive explicit
expressions for all the individual partial derivatives in Equation
(53). That's easy to do with a bit of calculus. Having done that, you
could then try to figure out how to write all the sums over indices as
matrix multiplications. This turns out to be tedious, and requires
some persistence, but not extraordinary insight. After doing all this,
and then simplifying as much as possible, what you discover is that
you end up with exactly the backpropagation algorithm! And so you
can think of the backpropagation algorithm as providing a way of
computing the sum over the rate factor for all these paths. Or, to
put it slightly differently, the backpropagation algorithm is a clever
way of keeping track of small perturbations to the weights (and
biases) as they propagate through the network, reach the output,
and then affect the cost.

Now, I'm not going to work through all this here. It's messy and
requires considerable care to work through all the details. If you're
up for a challenge, you may enjoy attempting it. And even if not, I
hope this line of thinking gives you some insight into what
backpropagation is accomplishing.

What about the other mystery - how backpropagation could have

21.6.18, 21(58Neural networks and deep learning

Page 29 of 29http://neuralnetworksanddeeplearning.com/chap2.html

been discovered in the first place? In fact, if you follow the approach
I just sketched you will discover a proof of backpropagation.
Unfortunately, the proof is quite a bit longer and more complicated
than the one I described earlier in this chapter. So how was that
short (but more mysterious) proof discovered? What you find when
you write out all the details of the long proof is that, after the fact,
there are several obvious simplifications staring you in the face. You
make those simplifications, get a shorter proof, and write that out.
And then several more obvious simplifications jump out at you. So
you repeat again. The result after a few iterations is the proof we
saw earlier* - short, but somewhat obscure, because all the
signposts to its construction have been removed! I am, of course,
asking you to trust me on this, but there really is no great mystery
to the origin of the earlier proof. It's just a lot of hard work
simplifying the proof I've sketched in this section.

*There is one clever step required. In Equation
(53) the intermediate variables are activations
like . The clever idea is to switch to using
weighted inputs, like , as the intermediate
variables. If you don't have this idea, and instead
continue using the activations , the proof you
obtain turns out to be slightly more complex
than the proof given earlier in the chapter.

al+ 1
q

zl+ 1
q

al+ 1
q

In academic work, please cite this book as: Michael A. Nielsen, "Neural Networks and Deep Learning",
Determination Press, 2015

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. This means
you're free to copy, share, and build on this book, but not to sell it. If you're interested in commercial use, please
contact me.

Last update: Sat Dec2 09:09:08 2017

http://creativecommons.org/licenses/by-nc/3.0/deed.en_GB
mailto:mn@michaelnielsen.org
http://creativecommons.org/licenses/by-nc/3.0/deed.en_GB

