
MLISP: Machine Learning in Signal Processing

Lecture 20

Michael A. Nielsen, “Neural Networks and Deep Leanring”

Scribe: S. Lotter

Agenda:

1. Perceptrons

2. Sigmoid neurons

3. The architecture of neural networks

4. A simple network to classify handwritten digits

5. Learning with gradient descent

6. Implementing our network to classify digits

1 Introduction

The human visual system is one of the wonders of the world. Consider the following sequence of
handwritten digits:

Most people effortlessly recognize those digits as 504192. That ease is deceptive. In each hemisphere
of our brain, humans have a primary visual cortex, also known as V1, containing 140 million neurons,
with tens of billions of connections between them. And yet human vision involves not just V1, but
an entire series of visual cortices - V2, V3, V4, and V5 - doing progressively more complex image
processing. We carry in our heads a supercomputer, tuned by evolution over hundreds of millions
of years, and superbly adapted to understand the visual world. Recognizing handwritten digits
isn’t easy. Rather, we humans are stupendously, astoundingly good at making sense of what our
eyes show us. But nearly all that work is done unconsciously. And so we don’t usually appreciate
how tough a problem our visual systems solve.

The difficulty of visual pattern recognition becomes apparent if you attempt to write a computer
program to recognize digits like those above. What seems easy when we do it ourselves suddenly
becomes extremely difficult. Simple intuitions about how we recognize shapes - “a 9 has a loop
at the top, and a vertical stroke in the bottom right” - turn out to be not so simple to express

1

algorithmically. When you try to make such rules precise, you quickly get lost in a morass of
exceptions and caveats and special cases. It seems hopeless.

Neural networks approach the problem in a different way. The idea is to take a large number of
handwritten digits, known as training examples,

and then develop a system which can learn from those training examples. In other words, the
neural network uses the examples to automatically infer rules for recognizing handwritten digits.
Furthermore, by increasing the number of training examples, the network can learn more about
handwriting, and so improve its accuracy. So while I’ve shown just 100 training digits above,
perhaps we could build a better handwriting recognizer by using thousands or even millions or
billions of training examples.

In this chapter we’ll write a computer program implementing a neural network that learns to
recognize handwritten digits. The program is just 74 lines long, and uses no special neural network
libraries. But this short program can recognize digits with an accuracy over 96 percent, without
human intervention. Furthermore, in later chapters we’ll develop ideas which can improve accuracy
to over 99 percent. In fact, the best commercial neural networks are now so good that they are
used by banks to process cheques, and by post offices to recognize addresses.

We’re focusing on handwriting recognition because it’s an excellent prototype problem for learning
about neural networks in general. As a prototype it hits a sweet spot: it’s challenging - it’s no small
feat to recognize handwritten digits - but it’s not so difficult as to require an extremely complicated
solution, or tremendous computational power. Furthermore, it’s a great way to develop more
advanced techniques, such as deep learning. And so throughout the book we’ll return repeatedly
to the problem of handwriting recognition. Later in the book, we’ll discuss how these ideas may
be applied to other problems in computer vision, and also in speech, natural language processing,
and other domains.

Of course, if the point of the chapter was only to write a computer program to recognize handwritten
digits, then the chapter would be much shorter! But along the way we’ll develop many key ideas
about neural networks, including two important types of artificial neuron (the perceptron and the
sigmoid neuron), and the standard learning algorithm for neural networks, known as stochastic
gradient descent. Throughout, I focus on explaining why things are done the way they are, and
on building your neural networks intuition. That requires a lengthier discussion than if I just
presented the basic mechanics of what’s going on, but it’s worth it for the deeper understanding
you’ll attain. Amongst the payoffs, by the end of the chapter we’ll be in position to understand

2

what deep learning is, and why it matters.

2 Perceptrons

What is a neural network? To get started, I’ll explain a type of artificial neuron called a perceptron.
Perceptrons were developed in the 1950s and 1960s by the scientist Frank Rosenblatt, inspired by
earlier work by Warren McCulloch and Walter Pitts. Today, it’s more common to use other
models of artificial neurons - in this book, and in much modern work on neural networks, the main
neuron model used is one called the sigmoid neuron. We’ll get to sigmoid neurons shortly. But to
understand why sigmoid neurons are defined the way they are, it’s worth taking the time to first
understand perceptrons.

So how do perceptrons work? A perceptron takes several binary inputs, x1, x2, . . ., and produces a
single binary output:

In the example shown the perceptron has three inputs, x1, x2, x3. In general it could have more or
fewer inputs. Rosenblatt proposed a simple rule to compute the output. He introduced weights,
w1, w2, . . ., real numbers expressing the importance of the respective inputs to the output. The
neuron’s output, 0 or 1, is determined by whether the weighted sum

∑
j wjxj is less than or greater

than some threshold value. Just like the weights, the threshold is a real number which is a parameter
of the neuron. To put it in more precise algebraic terms:

output =

{
0 if

∑
j wjxj ≤ threshold

1 if
∑

j wjxj > threshold
(1)

That’s all there is to how a perceptron works!

That’s the basic mathematical model. A way you can think about the perceptron is that it’s a device
that makes decisions by weighing up evidence. Let me give an example. It’s not a very realistic
example, but it’s easy to understand, and we’ll soon get to more realistic examples. Suppose the
weekend is coming up, and you’ve heard that there’s going to be a cheese festival in your city. You
like cheese, and are trying to decide whether or not to go to the festival. You might make your
decision by weighing up three factors:

• Is the weather good?

• Does your boyfriend or girlfriend want to accompany you?

• Is the festival near public transit? (You don’t own a car).

3

We can represent these three factors by corresponding binary variables x1, x2, and x3. For instance,
we’d have x1 = 1 if the weather is good, and x1 = 0 if the weather is bad. Similarly, x2 = 1 if your
boyfriend or girlfriend wants to go, and x2 = 0 if not. And similarly again for x3 and public transit.
Now, suppose you absolutely adore cheese, so much so that you’re happy to go to the festival even
if your boyfriend or girlfriend is uninterested and the festival is hard to get to. But perhaps you
really loathe bad weather, and there’s no way you’d go to the festival if the weather is bad. You
can use perceptrons to model this kind of decision-making. One way to do this is to choose a
weight w1 = 6 for the weather, and w2 = 2 and w3 = 2 for the other conditions. The larger value
of w1 indicates that the weather matters a lot to you, much more than whether your boyfriend or
girlfriend joins you, or the nearness of public transit. Finally, suppose you choose a threshold of
5 for the perceptron. With these choices, the perceptron implements the desired decision-making
model, outputting 1 whenever the weather is good, and 0 whenever the weather is bad. It makes
no difference to the output whether your boyfriend or girlfriend wants to go, or whether public
transit is nearby.

By varying the weights and the threshold, we can get different models of decision-making. For
example, suppose we instead chose a threshold of 3. Then the perceptron would decide that you
should go to the festival whenever the weather was good or when both the festival was near public
transit and your boyfriend or girlfriend was willing to join you. In other words, it’d be a different
model of decision-making. Dropping the threshold means you’re more willing to go to the festival.

Obviously, the perceptron isn’t a complete model of human decision-making! But what the example
illustrates is how a perceptron can weigh up different kinds of evidence in order to make decisions.
And it should seem plausible that a complex network of perceptrons could make quite subtle
decisions:

In this network, the first column of perceptrons - what we’ll call the first layer of perceptrons - is
making three very simple decisions, by weighing the input evidence. What about the perceptrons
in the second layer? Each of those perceptrons is making a decision by weighing up the results
from the first layer of decision-making. In this way a perceptron in the second layer can make a
decision at a more complex and more abstract level than perceptrons in the first layer. And even
more complex decisions can be made by the perceptron in the third layer. In this way, a many-layer
network of perceptrons can engage in sophisticated decision making.

Incidentally, when I defined perceptrons I said that a perceptron has just a single output. In the
network above the perceptrons look like they have multiple outputs. In fact, they’re still single
output. The multiple output arrows are merely a useful way of indicating that the output from a
perceptron is being used as the input to several other perceptrons. It’s less unwieldy than drawing
a single output line which then splits.

4

Let’s simplify the way we describe perceptrons. The condition
∑

j wjxj > threshold is cumbersome,
and we can make two notational changes to simplify it. The first change is to write

∑
j wjxj as a

dot product, w · x ≡
∑

j wjxj , where w and x are vectors whose components are the weights and
inputs, respectively. The second change is to move the threshold to the other side of the inequality,
and to replace it by what’s known as the perceptron’s bias, b ≡ −threshold. Using the bias instead
of the threshold, the perceptron rule can be rewritten:

output =

{
0 if w · x+ b ≤ 0
1 if w · x+ b > 0

(2)

You can think of the bias as a measure of how easy it is to get the perceptron to output a 1. Or to
put it in more biological terms, the bias is a measure of how easy it is to get the perceptron to fire.
For a perceptron with a really big bias, it’s extremely easy for the perceptron to output a 1. But if
the bias is very negative, then it’s difficult for the perceptron to output a 1. Obviously, introducing
the bias is only a small change in how we describe perceptrons, but we’ll see later that it leads to
further notational simplifications. Because of this, in the remainder of the book we won’t use the
threshold, we’ll always use the bias.

I’ve described perceptrons as a method for weighing evidence to make decisions. Another way
perceptrons can be used is to compute the elementary logical functions we usually think of as
underlying computation, functions such as AND, OR, and NAND. For example, suppose we have a
perceptron with two inputs, each with weight −2, and an overall bias of 3. Here’s our perceptron:

Then we see that input 00 produces output 1, since (−2)∗0+(−2)∗0+3 = 3 is positive. Here, I’ve
introduced the ∗ symbol to make the multiplications explicit. Similar calculations show that the
inputs 01 and 10 produce output 1. But the input 11 produces output 0, since (−2)∗1+(−2)∗1+3 =
−1 is negative. And so our perceptron implements a NAND gate!

The NAND example shows that we can use perceptrons to compute simple logical functions. In fact,
we can use networks of perceptrons to compute any logical function at all. The reason is that the
NAND gate is universal for computation, that is, we can build any computation up out of NAND gates.
For example, we can use NAND gates to build a circuit which adds two bits, x1 and x2. This requires
computing the bitwise sum, x1 ⊕ x2, as well as a carry bit which is set to 1 when both x1 and x2
are 1, i.e., the carry bit is just the bitwise product x1x2:

5

To get an equivalent network of perceptrons we replace all the NAND gates by perceptrons with two
inputs, each with weight −2, and an overall bias of 3. Here’s the resulting network. Note that I’ve
moved the perceptron corresponding to the bottom right NAND gate a little, just to make it easier
to draw the arrows on the diagram:

One notable aspect of this network of perceptrons is that the output from the leftmost perceptron
is used twice as input to the bottommost perceptron. When I defined the perceptron model I didn’t
say whether this kind of double-output-to-the-same-place was allowed. Actually, it doesn’t much
matter. If we don’t want to allow this kind of thing, then it’s possible to simply merge the two
lines, into a single connection with a weight of −4 instead of two connections with −2 weights. (If
you don’t find this obvious, you should stop and prove to yourself that this is equivalent.) With
that change, the network looks as follows, with all unmarked weights equal to −2, all biases equal
to 3, and a single weight of −4, as marked:

Up to now I’ve been drawing inputs like x1 and x2 as variables floating to the left of the network
of perceptrons. In fact, it’s conventional to draw an extra layer of perceptrons — the input layer
— to encode the inputs:

6

This notation for input perceptrons, in which we have an output, but no inputs,

is a shorthand. It doesn’t actually mean a perceptron with no inputs. To see this, suppose we
did have a perceptron with no inputs. Then the weighted sum

∑
j wjxj would always be zero, and

so the perceptron would output 1 if b > 0, and 0 if b ≤ 0. That is, the perceptron would simply
output a fixed value, not the desired value (x1, in the example above). It’s better to think of the
input perceptrons as not really being perceptrons at all, but rather special units which are simply
defined to output the desired values, x1, x2,

The adder example demonstrates how a network of perceptrons can be used to simulate a circuit
containing many NAND gates. And because NAND gates are universal for computation, it follows that
perceptrons are also universal for computation.

The computational universality of perceptrons is simultaneously reassuring and disappointing. It’s
reassuring because it tells us that networks of perceptrons can be as powerful as any other computing
device. But it’s also disappointing, because it makes it seem as though perceptrons are merely a
new type of NAND gate. That’s hardly big news!

However, the situation is better than this view suggests. It turns out that we can devise learning
algorithms which can automatically tune the weights and biases of a network of artificial neurons.
This tuning happens in response to external stimuli, without direct intervention by a programmer.
These learning algorithms enable us to use artificial neurons in a way which is radically different
to conventional logic gates. Instead of explicitly laying out a circuit of NAND and other gates,
our neural networks can simply learn to solve problems, sometimes problems where it would be
extremely difficult to directly design a conventional circuit.

3 Sigmoid neurons

Learning algorithms sound terrific. But how can we devise such algorithms for a neural network?
Suppose we have a network of perceptrons that we’d like to use to learn to solve some problem.
For example, the inputs to the network might be the raw pixel data from a scanned, handwritten

7

image of a digit. And we’d like the network to learn weights and biases so that the output from the
network correctly classifies the digit. To see how learning might work, suppose we make a small
change in some weight (or bias) in the network. What we’d like is for this small change in weight
to cause only a small corresponding change in the output from the network. As we’ll see in a
moment, this property will make learning possible. Schematically, here’s what we want (obviously
this network is too simple to do handwriting recognition!):

If it were true that a small change in a weight (or bias) causes only a small change in output, then
we could use this fact to modify the weights and biases to get our network to behave more in the
manner we want. For example, suppose the network was mistakenly classifying an image as an “8”
when it should be a “9”. We could figure out how to make a small change in the weights and biases
so the network gets a little closer to classifying the image as a “9”. And then we’d repeat this,
changing the weights and biases over and over to produce better and better output. The network
would be learning.

The problem is that this isn’t what happens when our network contains perceptrons. In fact, a
small change in the weights or bias of any single perceptron in the network can sometimes cause
the output of that perceptron to completely flip, say from 0 to 1. That flip may then cause the
behaviour of the rest of the network to completely change in some very complicated way. So while
your “9” might now be classified correctly, the behaviour of the network on all the other images is
likely to have completely changed in some hard-to-control way. That makes it difficult to see how
to gradually modify the weights and biases so that the network gets closer to the desired behaviour.
Perhaps there’s some clever way of getting around this problem. But it’s not immediately obvious
how we can get a network of perceptrons to learn.

We can overcome this problem by introducing a new type of artificial neuron called a sigmoid
neuron. Sigmoid neurons are similar to perceptrons, but modified so that small changes in their
weights and bias cause only a small change in their output. That’s the crucial fact which will allow
a network of sigmoid neurons to learn.

Okay, let me describe the sigmoid neuron. We’ll depict sigmoid neurons in the same way we depicted
perceptrons:

8

Just like a perceptron, the sigmoid neuron has inputs, x1, x2, But instead of being just 0 or 1,
these inputs can also take on any values between 0 and 1. So, for instance, 0.638 . . . is a valid input
for a sigmoid neuron. Also just like a perceptron, the sigmoid neuron has weights for each input,
w1, w2, . . ., and an overall bias, b. But the output is not 0 or 1. Instead, it’s σ(w · x+ b), where σ
is called the sigmoid function, and is defined by:

σ(z) ≡ 1

1 + e−z
. (3)

To put it all a little more explicitly, the output of a sigmoid neuron with inputs x1, x2, . . ., weights
w1, w2, . . ., and bias b is

1

1 + exp(−
∑

j wjxj − b)
. (4)

At first sight, sigmoid neurons appear very different to perceptrons. The algebraic form of the
sigmoid function may seem opaque and forbidding if you’re not already familiar with it. In fact,
there are many similarities between perceptrons and sigmoid neurons, and the algebraic form of the
sigmoid function turns out to be more of a technical detail than a true barrier to understanding.

To understand the similarity to the perceptron model, suppose z ≡ w · x + b is a large positive
number. Then e−z ≈ 0 and so σ(z) ≈ 1. In other words, when z = w ·x+b is large and positive, the
output from the sigmoid neuron is approximately 1, just as it would have been for a perceptron.
Suppose on the other hand that z = w · x+ b is very negative. Then e−z → ∞, and σ(z) ≈ 0. So
when z = w · x + b is very negative, the behaviour of a sigmoid neuron also closely approximates
a perceptron. It’s only when w · x + b is of modest size that there’s much deviation from the
perceptron model.

What about the algebraic form of σ? How can we understand that? In fact, the exact form of σ
isn’t so important — what really matters is the shape of the function when plotted. Here’s the
shape:

9

t

This shape is a smoothed out version of a step function:

If σ had in fact been a step function, then the sigmoid neuron would be a perceptron, since the
output would be 1 or 0 depending on whether w · x + b was positive or negative. By using the
actual σ function we get, as already implied above, a smoothed out perceptron. Indeed, it’s the
smoothness of the σ function that is the crucial fact, not its detailed form. The smoothness of
σ means that small changes ∆wj in the weights and ∆b in the bias will produce a small change
∆output in the output from the neuron. In fact, calculus tells us that ∆output is well approximated
by

∆output ≈
∑
j

∂ output

∂wj
∆wj +

∂ output

∂b
∆b, (5)

where the sum is over all the weights, wj , and ∂ output/∂wj and ∂ output/∂b denote partial deriva-
tives of the output with respect to wj and b, respectively. Don’t panic if you’re not comfortable
with partial derivatives! While the expression above looks complicated, with all the partial deriva-
tives, it’s actually saying something very simple (and which is very good news): ∆output is a linear
function of the changes ∆wj and ∆b in the weights and bias. This linearity makes it easy to choose
small changes in the weights and biases to achieve any desired small change in the output. So while
sigmoid neurons have much of the same qualitative behaviour as perceptrons, they make it much
easier to figure out how changing the weights and biases will change the output.

10

If it’s the shape of σ which really matters, and not its exact form, then why use the particular form
used for σ in Equation (5). In fact, later in the book we will occasionally consider neurons where
the output is f(w · x + b) for some other activation function f(·). The main thing that changes
when we use a different activation function is that the particular values for the partial derivatives
in Equation 5 change. It turns out that when we compute those partial derivatives later, using σ
will simplify the algebra, simply because exponentials have lovely properties when differentiated.
In any case, σ is commonly-used in work on neural nets, and is the activation function we’ll use
most often in this book.

How should we interpret the output from a sigmoid neuron? Obviously, one big difference between
perceptrons and sigmoid neurons is that sigmoid neurons don’t just output 0 or 1. They can have
as output any real number between 0 and 1, so values such as 0.173 . . . and 0.689 . . . are legitimate
outputs. This can be useful, for example, if we want to use the output value to represent the
average intensity of the pixels in an image input to a neural network. But sometimes it can be a
nuisance. Suppose we want the output from the network to indicate either “the input image is a
9” or “the input image is not a 9”. Obviously, it’d be easiest to do this if the output was a 0 or a
1, as in a perceptron. But in practice we can set up a convention to deal with this, for example,
by deciding to interpret any output of at least 0.5 as indicating a “9”, and any output less than
0.5 as indicating “not a 9”. I’ll always explicitly state when we’re using such a convention, so it
shouldn’t cause any confusion.

Problem set 5, problem 1-1: Sigmoid neurons simulating perceptrons, part I. Suppose
we take all the weights and biases in a network of perceptrons, and multiply them by a positive
constant, c > 0. Show that the behaviour of the network doesn’t change.

Problem set 5, problem 1-2: Sigmoid neurons simulating perceptrons, part II. Suppose
we have the same setup as the last problem - a network of perceptrons. Suppose also that the overall
input to the network of perceptrons has been chosen. We won’t need the actual input value, we
just need the input to have been fixed. Suppose the weights and biases are such that w · x+ b 6= 0
for the input x to any particular perceptron in the network. Now replace all the perceptrons in
the network by sigmoid neurons, and multiply the weights and biases by a positive constant c > 0.
Show that in the limit as c → ∞ the behaviour of this network of sigmoid neurons is exactly the
same as the network of perceptrons. How can this fail when w ·x+b = 00 for one of the perceptrons?

4 The architecture of neural networks

In the next section I’ll introduce a neural network that can do a pretty good job classifying hand-
written digits. In preparation for that, it helps to explain some terminology that lets us name
different parts of a network. Suppose we have the network:

11

As mentioned earlier, the leftmost layer in this network is called the input layer, and the neurons
within the layer are called input neurons. The rightmost or output layer contains the output
neurons, or, as in this case, a single output neuron. The middle layer is called a hidden layer, since
the neurons in this layer are neither inputs nor outputs. The term “hidden” perhaps sounds a little
mysterious — the first time I heard the term I thought it must have some deep philosophical or
mathematical significance — but it really means nothing more than “not an input or an output”.
The network above has just a single hidden layer, but some networks have multiple hidden layers.
For example, the following four-layer network has two hidden layers:

Somewhat confusingly, and for historical reasons, such multiple layer networks are sometimes called
multilayer perceptrons or MLPs, despite being made up of sigmoid neurons, not perceptrons. I’m
not going to use the MLP terminology in this book, since I think it’s confusing, but wanted to warn
you of its existence.

The design of the input and output layers in a network is often straightforward. For example,
suppose we’re trying to determine whether a handwritten image depicts a “9” or not. A natural
way to design the network is to encode the intensities of the image pixels into the input neurons.
If the image is a 64 by 64 greyscale image, then we’d have 4, 096 = 64 × 64 input neurons, with
the intensities scaled appropriately between 0 and 1. The output layer will contain just a single
neuron, with output values of less than 0.5 indicating “input image is not a 9”, and values greater
than 0.5 indicating “input image is a 9”.

While the design of the input and output layers of a neural network is often straightforward, there

12

can be quite an art to the design of the hidden layers. In particular, it’s not possible to sum up
the design process for the hidden layers with a few simple rules of thumb. Instead, neural networks
researchers have developed many design heuristics for the hidden layers, which help people get the
behaviour they want out of their nets. For example, such heuristics can be used to help determine
how to trade off the number of hidden layers against the time required to train the network. We’ll
meet several such design heuristics later in this book.

Up to now, we’ve been discussing neural networks where the output from one layer is used as input
to the next layer. Such networks are called feedforward neural networks. This means there are no
loops in the network — information is always fed forward, never fed back. If we did have loops,
we’d end up with situations where the input to the σ function depended on the output. That’d be
hard to make sense of, and so we don’t allow such loops.

However, there are other models of artificial neural networks in which feedback loops are possible.
These models are called recurrent neural networks. The idea in these models is to have neurons
which fire for some limited duration of time, before becoming quiescent. That firing can stimulate
other neurons, which may fire a little while later, also for a limited duration. That causes still more
neurons to fire, and so over time we get a cascade of neurons firing. Loops don’t cause problems in
such a model, since a neuron’s output only affects its input at some later time, not instantaneously.

Recurrent neural nets have been less influential than feedforward networks, in part because the
learning algorithms for recurrent nets are (at least to date) less powerful. But recurrent networks
are still extremely interesting. They’re much closer in spirit to how our brains work than feedforward
networks. And it’s possible that recurrent networks can solve important problems which can only
be solved with great difficulty by feedforward networks. However, to limit our scope, in this book
we’re going to concentrate on the more widely-used feedforward networks.

5 A simple network to classify handwritten digits

Having defined neural networks, let’s return to handwriting recognition. We can split the problem
of recognizing handwritten digits into two sub-problems. First, we’d like a way of breaking an
image containing many digits into a sequence of separate images, each containing a single digit.
For example, we’d like to break the image

into six separate images,

We humans solve this segmentation problem with ease, but it’s challenging for a computer program
to correctly break up the image. Once the image has been segmented, the program then needs to
classify each individual digit. So, for instance, we’d like our program to recognize that the first
digit above,

13

is a 5.

We’ll focus on writing a program to solve the second problem, that is, classifying individual digits.
We do this because it turns out that the segmentation problem is not so difficult to solve, once
you have a good way of classifying individual digits. There are many approaches to solving the
segmentation problem. One approach is to trial many different ways of segmenting the image,
using the individual digit classifier to score each trial segmentation. A trial segmentation gets a
high score if the individual digit classifier is confident of its classification in all segments, and a low
score if the classifier is having a lot of trouble in one or more segments. The idea is that if the
classifier is having trouble somewhere, then it’s probably having trouble because the segmentation
has been chosen incorrectly. This idea and other variations can be used to solve the segmentation
problem quite well. So instead of worrying about segmentation we’ll concentrate on developing
a neural network which can solve the more interesting and difficult problem, namely, recognizing
individual handwritten digits.

To recognize individual digits we will use a three-layer neural network:

The input layer of the network contains neurons encoding the values of the input pixels. As
discussed in the next section, our training data for the network will consist of many 28 by 28 pixel

14

images of scanned handwritten digits, and so the input layer contains 784 = 28× 28 neurons. For
simplicity I’ve omitted most of the 784 input neurons in the diagram above. The input pixels are
greyscale, with a value of 0.0 representing white, a value of 1.0 representing black, and in between
values representing gradually darkening shades of grey.

The second layer of the network is a hidden layer. We denote the number of neurons in this hidden
layer by n, and we’ll experiment with different values for n. The example shown illustrates a small
hidden layer, containing just n = 15 neurons.

The output layer of the network contains 10 neurons. If the first neuron fires, i.e., has an output ≈ 1,
then that will indicate that the network thinks the digit is a 0. If the second neuron fires then that
will indicate that the network thinks the digit is a 1. And so on. A little more precisely, we number
the output neurons from 0 through 9, and figure out which neuron has the highest activation value.
If that neuron is, say, neuron number 6, then our network will guess that the input digit was a 6.
And so on for the other output neurons.

You might wonder why we use 10 output neurons. After all, the goal of the network is to tell us
which digit (0, 1, 2, . . . , 9) corresponds to the input image. A seemingly natural way of doing that
is to use just 4 output neurons, treating each neuron as taking on a binary value, depending on
whether the neuron’s output is closer to 0 or to 1. Four neurons are enough to encode the answer,
since 24 = 16 is more than the 10 possible values for the input digit. Why should our network
use 10 neurons instead? Isn’t that inefficient? The ultimate justification is empirical: we can try
out both network designs, and it turns out that, for this particular problem, the network with 10
output neurons learns to recognize digits better than the network with 4 output neurons. But that
leaves us wondering why using 10 output neurons works better. Is there some heuristic that would
tell us in advance that we should use the 10-output encoding instead of the 4-output encoding?

To understand why we do this, it helps to think about what the neural network is doing from first
principles. Consider first the case where we use 10 output neurons. Let’s concentrate on the first
output neuron, the one that’s trying to decide whether or not the digit is a 0. It does this by
weighing up evidence from the hidden layer of neurons. What are those hidden neurons doing?
Well, just suppose for the sake of argument that the first neuron in the hidden layer detects whether
or not an image like the following is present:

It can do this by heavily weighting input pixels which overlap with the image, and only lightly
weighting the other inputs. In a similar way, let’s suppose for the sake of argument that the
second, third, and fourth neurons in the hidden layer detect whether or not the following images
are present:

15

As you may have guessed, these four images together make up the 0 image that we saw in the line
of digits shown earlier:

So if all four of these hidden neurons are firing then we can conclude that the digit is a 0. Of
course, that’s not the only sort of evidence we can use to conclude that the image was a 0 — we
could legitimately get a 0 in many other ways (say, through translations of the above images, or
slight distortions). But it seems safe to say that at least in this case we’d conclude that the input
was a 0.

Supposing the neural network functions in this way, we can give a plausible explanation for why
it’s better to have 10 outputs from the network, rather than 4. If we had 4 outputs, then the first
output neuron would be trying to decide what the most significant bit of the digit was. And there’s
no easy way to relate that most significant bit to simple shapes like those shown above. It’s hard
to imagine that there’s any good historical reason the component shapes of the digit will be closely
related to (say) the most significant bit in the output.

Now, with all that said, this is all just a heuristic. Nothing says that the three-layer neural network
has to operate in the way I described, with the hidden neurons detecting simple component shapes.
Maybe a clever learning algorithm will find some assignment of weights that lets us use only 4
output neurons. But as a heuristic the way of thinking I’ve described works pretty well, and can
save you a lot of time in designing good neural network architectures.

Problem set 5, problem 1-3: There is a way of determining the bitwise representation of a
digit by adding an extra layer to the three-layer network above. The extra layer converts the output
from the previous layer into a binary representation, as illustrated in the figure below. Find a set
of weights and biases for the new output layer. Assume that the first 3 layers of neurons are such
that the correct output in the third layer (i.e., the old output layer) has activation at least 0.99,
and incorrect outputs have activation less than 0.01.

6 Learning with gradient descent

Now that we have a design for our neural network, how can it learn to recognize digits? The first
thing we’ll need is a data set to learn from - a so-called training data set. We’ll use the MNIST

16

data set, which contains tens of thousands of scanned images of handwritten digits, together with
their correct classifications. MNIST’s name comes from the fact that it is a modified subset of two
data sets collected by NIST, the United States’ National Institute of Standards and Technology.
Here’s a few images from MNIST:

As you can see, these digits are, in fact, the same as those shown at the beginning of this chapter
as a challenge to recognize. Of course, when testing our network we’ll ask it to recognize images
which aren’t in the training set!

The MNIST data comes in two parts. The first part contains 60,000 images to be used as training
data. These images are scanned handwriting samples from 250 people, half of whom were US
Census Bureau employees, and half of whom were high school students. The images are greyscale
and 28 by 28 pixels in size. The second part of the MNIST data set is 10,000 images to be used
as test data. Again, these are 28 by 28 greyscale images. We’ll use the test data to evaluate how
well our neural network has learned to recognize digits. To make this a good test of performance,
the test data was taken from a different set of 250 people than the original training data (albeit
still a group split between Census Bureau employees and high school students). This helps give
us confidence that our system can recognize digits from people whose writing it didn’t see during
training.

We’ll use the notation x to denote a training input. It’ll be convenient to regard each training
input x as a 28× 28 = 784-dimensional vector. Each entry in the vector represents the grey value
for a single pixel in the image. We’ll denote the corresponding desired output by y = y(x), where
y is a 10-dimensional vector. For example, if a particular training image, x, depicts a 6, then
y(x) = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0)T is the desired output from the network. Note that T here is the
transpose operation, turning a row vector into an ordinary (column) vector.

What we’d like is an algorithm which lets us find weights and biases so that the output from the
network approximates y(x) for all training inputs x. To quantify how well we’re achieving this goal
we define a cost function:

C(w, b) ≡ 1

2n

∑
x

‖y(x)− a‖2. (6)

Here, w denotes the collection of all weights in the network, b all the biases, n is the total number
of training inputs, a is the vector of outputs from the network when x is input, and the sum is over
all training inputs, x. Of course, the output a depends on x, w and b, but to keep the notation
simple I haven’t explicitly indicated this dependence. The notation ‖v‖ just denotes the usual
length function for a vector v. We’ll call C the quadratic cost function; it’s also sometimes known
as the mean squared error or just MSE. Inspecting the form of the quadratic cost function, we see
that C(w, b) is non-negative, since every term in the sum is non-negative. Furthermore, the cost
C(w, b) becomes small, i.e., C(w, b) ≈ 0, precisely when y(x) is approximately equal to the output,
a, for all training inputs, x. So our training algorithm has done a good job if it can find weights
and biases so that C(w, b) ≈ 0. By contrast, it’s not doing so well when C(w, b) is large — that

17

would mean that y(x) is not close to the output a for a large number of inputs. So the aim of our
training algorithm will be to minimize the cost C(w, b) as a function of the weights and biases. In
other words, we want to find a set of weights and biases which make the cost as small as possible.
We’ll do that using an algorithm known as gradient descent.

Why introduce the quadratic cost? After all, aren’t we primarily interested in the number of images
correctly classified by the network? Why not try to maximize that number directly, rather than
minimizing a proxy measure like the quadratic cost? The problem with that is that the number of
images correctly classified is not a smooth function of the weights and biases in the network. For
the most part, making small changes to the weights and biases won’t cause any change at all in the
number of training images classified correctly. That makes it difficult to figure out how to change
the weights and biases to get improved performance. If we instead use a smooth cost function like
the quadratic cost it turns out to be easy to figure out how to make small changes in the weights
and biases so as to get an improvement in the cost. That’s why we focus first on minimizing the
quadratic cost, and only after that will we examine the classification accuracy.

Even given that we want to use a smooth cost function, you may still wonder why we choose the
quadratic function used in Equation (6). Isn’t this a rather ad hoc choice? Perhaps if we chose
a different cost function we’d get a totally different set of minimizing weights and biases? This is
a valid concern, and later we’ll revisit the cost function, and make some modifications. However,
the quadratic cost function of Equation (6) works perfectly well for understanding the basics of
learning in neural networks, so we’ll stick with it for now.

Recapping, our goal in training a neural network is to find weights and biases which minimize
the quadratic cost function C(w, b). This is a well-posed problem, but it’s got a lot of distracting
structure as currently posed — the interpretation of w and b as weights and biases, the σ function
lurking in the background, the choice of network architecture, MNIST, and so on. It turns out that
we can understand a tremendous amount by ignoring most of that structure, and just concentrating
on the minimization aspect. So for now we’re going to forget all about the specific form of the cost
function, the connection to neural networks, and so on. Instead, we’re going to imagine that we’ve
simply been given a function of many variables and we want to minimize that function. We’re
going to develop a technique called gradient descent which can be used to solve such minimization
problems. Then we’ll come back to the specific function we want to minimize for neural networks.

Okay, let’s suppose we’re trying to minimize some function, C(v). This could be any real-valued
function of many variables, v = v1, v2, Note that I’ve replaced the w and b notation by v to
emphasize that this could be any function — we’re not specifically thinking in the neural networks
context any more. To minimize C(v) t helps to imagine C as a function of just two variables, which
we’ll call v1 and v2:

18

What we’d like is to find where C achieves its global minimum. Now, of course, for the function
plotted above, we can eyeball the graph and find the minimum. In that sense, I’ve perhaps shown
slightly too simple a function! A general function, C, may be a complicated function of many
variables, and it won’t usually be possible to just eyeball the graph to find the minimum.

One way of attacking the problem is to use calculus to try to find the minimum analytically. We
could compute derivatives and then try using them to find places where C is an extremum. With
some luck that might work when C is a function of just one or a few variables. But it’ll turn into a
nightmare when we have many more variables. And for neural networks we’ll often want far more
variables — the biggest neural networks have cost functions which depend on billions of weights
and biases in an extremely complicated way. Using calculus to minimize that just won’t work!

(After asserting that we’ll gain insight by imagining C as a function of just two variables, I’ve turned
around twice in two paragraphs and said, “hey, but what if it’s a function of many more than two
variables?” Sorry about that. Please believe me when I say that it really does help to imagine C
as a function of two variables. It just happens that sometimes that picture breaks down, and the
last two paragraphs were dealing with such breakdowns. Good thinking about mathematics often
involves juggling multiple intuitive pictures, learning when it’s appropriate to use each picture, and
when it’s not.)

Okay, so calculus doesn’t work. Fortunately, there is a beautiful analogy which suggests an algo-
rithm which works pretty well. We start by thinking of our function as a kind of a valley. If you
squint just a little at the plot above, that shouldn’t be too hard. And we imagine a ball rolling
down the slope of the valley. Our everyday experience tells us that the ball will eventually roll
to the bottom of the valley. Perhaps we can use this idea as a way to find a minimum for the
function? We’d randomly choose a starting point for an (imaginary) ball, and then simulate the
motion of the ball as it rolled down to the bottom of the valley. We could do this simulation simply
by computing derivatives (and perhaps some second derivatives) of C — those derivatives would
tell us everything we need to know about the local “shape” of the valley, and therefore how our
ball should roll.

Based on what I’ve just written, you might suppose that we’ll be trying to write down Newton’s
equations of motion for the ball, considering the effects of friction and gravity, and so on. Actually,
we’re not going to take the ball-rolling analogy quite that seriously — we’re devising an algorithm

19

to minimize C, not developing an accurate simulation of the laws of physics! The ball’s-eye view
is meant to stimulate our imagination, not constrain our thinking. So rather than get into all the
messy details of physics, let’s simply ask ourselves: if we were declared God for a day, and could
make up our own laws of physics, dictating to the ball how it should roll, what law or laws of
motion could we pick that would make it so the ball always rolled to the bottom of the valley?

To make this question more precise, let’s think about what happens when we move the ball a small
amount ∆v1 in the v1 direction, and a small amount ∆v2 in the v2 direction. Calculus tells us that
C changes as follows:

∆C ≈ ∂C

∂v1
∆v1 +

∂C

∂v2
∆v2. (7)

We’re going to find a way of choosing ∆v1 and ∆v2 so as to make ∆C negative; i.e., we’ll choose
them so the ball is rolling down into the valley. To figure out how to make such a choice it helps
to define ∆v to be the vector of changes in v, ∆v ≡ (∆v1,∆v2)

T , where T is again the transpose
operation, turning row vectors into column vectors. We’ll also define the gradient of C to be the

vector of partial derivatives,
(

∂C
∂v1

, ∂C
∂v2

)T
. We denote the gradient vector by ∇C, i.e.:

∇C ≡
(
∂C

∂v1
,
∂C

∂v2

)T

. (8)

In a moment we’ll rewrite the change ∆C in terms of ∆v and the gradient, ∇C. Before getting
to that, though, I want to clarify something that sometimes gets people hung up on the gradient.
When meeting the ∇C notation for the first time, people sometimes wonder how they should think
about the ∇ symbol. What, exactly, does ∇ mean? In fact, it’s perfectly fine to think of ∇C as
a single mathematical object — the vector defined above — which happens to be written using
two symbols. In this point of view, ∇ s just a piece of notational flag-waving, telling you “hey,
∇C is a gradient vector”. There are more advanced points of view where ∇ can be viewed as an
independent mathematical entity in its own right (for example, as a differential operator), but we
won’t need such points of view.

With these definitions, the expression (7) for ∆C can be rewritten as

∆C ≈ ∇C ·∆v. (9)

This equation helps explain why ∇C is called the gradient vector: ∇C relates changes in v to
changes in C, just as we’d expect something called a gradient to do. But what’s really exciting
about the equation is that it lets us see how to choose ∆v so as to make ∆C negative. In particular,
suppose we choose

∆v = −η∇C, (10)

where η is a small, positive parameter (known as the learning rate). Then Equation (9) tells us
that ∆C ≈ −η∇C · ∇C = −η‖∇C‖2. Because ‖∇C‖2 ≥ 0, this guarantees that ∆C ≤ 0, i.e., C
will always decrease, never increase, if we change v according to the prescription in (10). (Within,
of course, the limits of the approximation in Equation (9)). This is exactly the property we wanted!
And so we’ll take Equation (10) to define the “law of motion” for the ball in our gradient descent

20

algorithm. That is, we’ll use Equation (10) to compute a value for ∆v, then move the ball’s position
v by that amount:

v → v′ = v − η∇C. (11)

Then we’ll use this update rule again, to make another move. If we keep doing this, over and over,
we’ll keep decreasing C until — we hope — we reach a global minimum.

Summing up, the way the gradient descent algorithm works is to repeatedly compute the gradient
∇C, and then to move in the opposite direction, “falling down” the slope of the valley. We can
visualize it like this:

Notice that with this rule gradient descent doesn’t reproduce real physical motion. In real life a ball
has momentum, and that momentum may allow it to roll across the slope, or even (momentarily)
roll uphill. It’s only after the effects of friction set in that the ball is guaranteed to roll down into
the valley. By contrast, our rule for choosing ∆v just says “go down, right now”. That’s still a
pretty good rule for finding the minimum!

To make gradient descent work correctly, we need to choose the learning rate η to be small enough
that Equation (9) is a good approximation. If we don’t, we might end up with ∆C > 0, which
obviously would not be good! At the same time, we don’t want η to be too small, since that
will make the changes ∆v tiny, and thus the gradient descent algorithm will work very slowly. In
practical implementations, η is often varied so that Equation (9) remains a good approximation,
but the algorithm isn’t too slow. We’ll see later how this works.

21

I’ve explained gradient descent when C is a function of just two variables. But, in fact, everything
works just as well even when C is a function of many more variables. Suppose in particular that
C is a function of m variables, v1, . . . , vm. Then the change ∆C in C produced by a small change
∆v = (∆v1, . . . ,∆vm)T is

∆C ≈ ∇C ·∆v, (12)

where the gradient ∇C is the vector

∇C ≡
(
∂C

∂v1
, . . . ,

∂C

∂vm

)T

. (13)

Just as for the two variable case, we can choose

∆v = −η∇C, (14)

and we’re guaranteed that our (approximate) expression (12) for ∆C will be negative. This gives
us a way of following the gradient to a minimum, even when C is a function of many variables, by
repeatedly applying the update rule

v → v′ = v − η∇C. (15)

You can think of this update rule as defining the gradient descent algorithm. It gives us a way of
repeatedly changing the position v in order to find a minimum of the function C. The rule doesn’t
always work — several things can go wrong and prevent gradient descent from finding the global
minimum of C, a point we’ll return to explore in later chapters. But, in practice gradient descent
often works extremely well, and in neural networks we’ll find that it’s a powerful way of minimizing
the cost function, and so helping the net learn.

Indeed, there’s even a sense in which gradient descent is the optimal strategy for searching for a
minimum.

Let’s suppose that we’re trying to make a move ∆v in position so as to decrease C as much as
possible. This is equivalent to minimizing ∆C ≈ ∇C · ∆v. We’ll constrain the size of the move
so that ‖∆v‖ = ε for some small fixed ε > 0. In other words, we want a move that is a small
step of a fixed size, and we’re trying to find the movement direction which decreases C as much as
possible. It can be proved that the choice of ∆v which minimizes ∇C ·∆v is ∆v = −η∇C, where
η = ε/‖∇C‖ is determined by the size constraint ‖∆v‖ = ε. So gradient descent can be viewed as
a way of taking small steps in the direction which does the most to immediately decrease C.

Problem set 5, problem 1-4: Prove the assertion of the last paragraph. Hint: If you’re not
already familiar with the Cauchy-Schwarz inequality, you may find it helpful to familiarize yourself
with it.

People have investigated many variations of gradient descent, including variations that more closely
mimic a real physical ball. These ball-mimicking variations have some advantages, but also have
a major disadvantage: it turns out to be necessary to compute second partial derivatives of C,
and this can be quite costly. To see why it’s costly, suppose we want to compute all the second
partial derivatives ∂2C/∂vj∂vk. If there are a million such vj variables then we’d need to compute

22

something like a trillion (i.e., a million squared) second partial derivatives! That’s going to be
computationally costly. With that said, there are tricks for avoiding this kind of problem, and
finding alternatives to gradient descent is an active area of investigation. But in this book we’ll use
gradient descent (and variations) as our main approach to learning in neural networks.

How can we apply gradient descent to learn in a neural network? The idea is to use gradient
descent to find the weights wk and biases bl which minimize the cost in Equation (6). To see how
this works, let’s restate the gradient descent update rule, with the weights and biases replacing
the variables vj . In other words, our “position” now has components wk and bl, and the gradient
vector ∇C has corresponding components ∂C/∂wk and ∂C/∂bl. Writing out the gradient descent
update rule in terms of components, we have

wk → w′k = wk − η
∂C

∂wk
(16)

bl → b′l = bl − η
∂C

∂bl
. (17)

By repeatedly applying this update rule we can “run down the hill”, and hopefully find a minimum
of the cost function. In other words, this is a rule which can be used to learn in a neural network.

There are a number of challenges in applying the gradient descent rule. We’ll look into those in
depth in later chapters. But for now I just want to mention one problem. To understand what the
problem is, let’s look back at the quadratic cost in Equation (6). Notice that this cost function has

the form C = 1
n

∑
xCx, that is, it’s an average over costs Cx ≡ ‖y(x)−a‖2

2 for individual training
examples. In practice, to compute the gradient ∇C we need to compute the gradients ∇Cx

separately for each training input, x, and then average them, ∇C = 1
n

∑
x∇Cx. Unfortunately,

when the number of training inputs is very large this can take a long time, and learning thus occurs
slowly.

An idea called stochastic gradient descent can be used to speed up learning. The idea is to estimate
the gradient ∇C by computing ∇Cx for a small sample of randomly chosen training inputs. By
averaging over this small sample it turns out that we can quickly get a good estimate of the true
gradient ∇C, and this helps speed up gradient descent, and thus learning.

To make these ideas more precise, stochastic gradient descent works by randomly picking out a
small number m of randomly chosen training inputs. We’ll label those random training inputs
X1, X2, . . . , Xm, and refer to them as a mini-batch. Provided the sample size m is large enough we
expect that the average value of the ∇CXj will be roughly equal to the average over all ∇Cx, that
is, ∑m

j=1∇CXj

m
≈
∑

x∇Cx

n
= ∇C, (18)

where the second sum is over the entire set of training data. Swapping sides we get

∇C ≈ 1

m

m∑
j=1

∇CXj , (19)

confirming that we can estimate the overall gradient by computing gradients just for the randomly
chosen mini-batch.

23

To connect this explicitly to learning in neural networks, suppose wk and bl denote the weights and
biases in our neural network. Then stochastic gradient descent works by picking out a randomly
chosen mini-batch of training inputs, and training with those,

wk → w′k = wk −
η

m

∑
j

∂CXj

∂wk
(20)

bl → b′l = bl −
η

m

∑
j

∂CXj

∂bl
, (21)

where the sums are over all the training examples Xj in the current mini-batch. Then we pick out
another randomly chosen mini-batch and train with those. And so on, until we’ve exhausted the
training inputs, which is said to complete an epoch of training. At that point we start over with a
new training epoch.

Incidentally, it’s worth noting that conventions vary about scaling of the cost function and of mini-
batch updates to the weights and biases. In Equation (6) we scaled the overall cost function by a
factor 1

n . People sometimes omit the 1
n , summing over the costs of individual training examples

instead of averaging. This is particularly useful when the total number of training examples isn’t
known in advance. This can occur if more training data is being generated in real time, for instance.
And, in a similar way, the mini-batch update rules (20) and (21) sometimes omit the 1

m term out
the front of the sums. Conceptually this makes little difference, since it’s equivalent to rescaling
the learning rate η. But when doing detailed comparisons of different work it’s worth watching out
for.

We can think of stochastic gradient descent as being like political polling: it’s much easier to sample
a small mini-batch than it is to apply gradient descent to the full batch, just as carrying out a poll
is easier than running a full election. For example, if we have a training set of size n = 60, 000,
as in MNIST, and choose a mini-batch size of (say) m = 10, this means we’ll get a factor of 6,000
speedup in estimating the gradient! Of course, the estimate won’t be perfect — there will be
statistical fluctuations — but it doesn’t need to be perfect: all we really care about is moving in a
general direction that will help decrease C, and that means we don’t need an exact computation of
the gradient. In practice, stochastic gradient descent is a commonly used and powerful technique
for learning in neural networks, and it’s the basis for most of the learning techniques we’ll develop
in this book.

Let me conclude this section by discussing a point that sometimes bugs people new to gradient
descent. In neural networks the cost C is, of course, a function of many variables — all the weights
and biases — and so in some sense defines a surface in a very high-dimensional space. Some people
get hung up thinking: “Hey, I have to be able to visualize all these extra dimensions”. And they
may start to worry: “I can’t think in four dimensions, let alone five (or five million)”. Is there some
special ability they’re missing, some ability that “real” supermathematicians have? Of course, the
answer is no. Even most professional mathematicians can’t visualize four dimensions especially
well, if at all. The trick they use, instead, is to develop other ways of representing what’s going on.
That’s exactly what we did above: we used an algebraic (rather than visual) representation of ∆C
to figure out how to move so as to decrease C. People who are good at thinking in high dimensions
have a mental library containing many different techniques along these lines; our algebraic trick
is just one example. Those techniques may not have the simplicity we’re accustomed to when
visualizing three dimensions, but once you build up a library of such techniques, you can get pretty
good at thinking in high dimensions. I won’t go into more detail here, but if you’re interested

24

then you may enjoy reading this discussion (http://mathoverflow.net/questions/25983/intuitive-
crutches-for-higher-dimensional-thinking) of some of the techniques professional mathematicians
use to think in high dimensions. While some of the techniques discussed are quite complex, much
of the best content is intuitive and accessible, and could be mastered by anyone.

7 Implementing our network to classify digits

Alright, let’s write a program that learns how to recognize handwritten digits, using stochastic
gradient descent and the MNIST training data. We’ll do this with a short Python (2.7) program,
just 74 lines of code! The first thing we need is to get the MNIST data. If you’re a git user then
you can obtain the data by cloning the code repository for this book,

git clone https://github.com/mnielsen/neural-networks-and-deep-learning.git

If you don’t use git then you can download the data and code here (https://github.com/mnielsen/neural-
networks-and-deep-learning/archive/master.zip).

Incidentally, when I described the MNIST data earlier, I said it was split into 60,000 training
images, and 10,000 test images. That’s the official MNIST description. Actually, we’re going to
split the data a little differently. We’ll leave the test images as is, but split the 60,000-image MNIST
training set into two parts: a set of 50,000 images, which we’ll use to train our neural network, and
a separate 10,000 image validation set. We won’t use the validation data in this chapter, but later
in the book we’ll find it useful in figuring out how to set certain hyper-parameters of the neural
network — things like the learning rate, and so on, which aren’t directly selected by our learning
algorithm. Although the validation data isn’t part of the original MNIST specification, many people
use MNIST in this fashion, and the use of validation data is common in neural networks. When
I refer to the “MNIST training data” from now on, I’ll be referring to our 50,000 image data set,
not the original 60,000 image data set.

Apart from the MNIST data we also need a Python library called Numpy, for doing fast linear alge-
bra. If you don’t already have Numpy installed, you can get it here (http://www.scipy.org/install.html).

Let me explain the core features of the neural networks code, before giving a full listing, below.
The centerpiece is a Network class, which we use to represent a neural network. Here’s the code
we use to initialize a Network object:

class Network(object):

def init (self, sizes):

self.num layers = len(sizes)

self.sizes = sizes

self.biases = [np.random.randn(y, 1) for y in sizes[1:]]

self.weights = [np.random.randn(y, x)

for x, y in zip(sizes[:−1], sizes[1:])]

In this code, the list sizes contains the number of neurons in the respective layers. So, for example,
if we want to create a Network object with 2 neurons in the first layer, 3 neurons in the second
layer, and 1 neuron in the final layer, we’d do this with the code:

25

net = Network([2, 3, 1])

The biases and weights in the Network object are all initialized randomly, using the Numpy
np.random.randn function to generate Gaussian distributions with mean 0 and standard devi-
ation 1. This random initialization gives our stochastic gradient descent algorithm a place to start
from. In later chapters we’ll find better ways of initializing the weights and biases, but this will
do for now. Note that the Network initialization code assumes that the first layer of neurons is
an input layer, and omits to set any biases for those neurons, since biases are only ever used in
computing the outputs from later layers.

Note also that the biases and weights are stored as lists of Numpy matrices. So, for example
net.weights[1] is a Numpy matrix storing the weights connecting the second and third layers
of neurons. (It’s not the first and second layers, since Python’s list indexing starts at 0.) Since
net.weights[1] is rather verbose, let’s just denote that matrix w. It’s a matrix such that wjk is
the weight for the connection between the kth neuron in the second layer, and the jth neuron in the
third layer. This ordering of the j and k indices may seem strange — surely it’d make more sense
to swap the j and k indices around? The big advantage of using this ordering is that it means that
the vector of activations of the third layer of neurons is:

a′ = σ(wa+ b). (22)

There’s quite a bit going on in this equation, so let’s unpack it piece by piece. a is the vector of
activations of the second layer of neurons. To obtain a′ we multiply a by the weight matrix w, and
add the vector b of biases. We then apply the function σ elementwise to every entry in the vector
wa+ b. (This is called vectorizing the function σ.) It’s easy to verify that Equation (22) gives the
same result as our earlier rule, Equation (4), for computing the output of a sigmoid neuron.

With all this in mind, it’s easy to write code computing the output from a Network instance. We
begin by defining the sigmoid function:

def sigmoid(z):

return 1.0/(1.0+np.exp(−z))

Note that when the input z is a vector or Numpy array, Numpy automatically applies the function
sigmoid elementwise, that is, in vectorized form.

We then add a feedforward method to the Network class, which, given an input a for the network,
returns the corresponding output. All the method does is applies Equation (20) for each layer:

def feedforward(self, a):

"""Return the output of the network if ‘‘a‘‘ is input."""

for b, w in zip(self.biases, self.weights):

a = sigmoid(np.dot(w, a)+b)

return a

Of course, the main thing we want our Network objects to do is to learn. To that end we’ll give
them an SGD method which implements stochastic gradient descent. Here’s the code. It’s a little
mysterious in a few places, but I’ll break it down below, after the listing.

26

def SGD(self, training data , epochs, mini batch size , eta,

test data=None):

"""Train the neural network using mini−batch stochastic
gradient descent. The ‘‘training data ‘‘ is a list of tuples

‘‘(x, y)‘‘ representing the training inputs and the desired

outputs. The other non−optional parameters are
self−explanatory. If ‘‘test data ‘‘ is provided then the

network will be evaluated against the test data after each

epoch, and partial progress printed out. This is useful for

tracking progress , but slows things down substantially."""

if test data: n test = len(test data)

n = len(training data)

for j in xrange(epochs):

random.shuffle(training data)

mini batches = [

training data[k:k+mini batch size]

for k in xrange(0, n, mini batch size)]

for mini batch in mini batches:

self.update mini batch(mini batch , eta)

if test data:

print "Epoch {0}: {1} / {2}".format(
j, self.evaluate(test data), n test)

else:

print "Epoch {0} complete".format(j)

The training_data is a list of tuples (x, y) representing the training inputs and corresponding
desired outputs. The variables epochs and mini_batch_size are what you’d expect — the number
of epochs to train for, and the size of the mini-batches to use when sampling. eta is the learning
rate, η. If the optional argument test_data is supplied, then the program will evaluate the network
after each epoch of training, and print out partial progress. This is useful for tracking progress,
but slows things down substantially.

The code works as follows. In each epoch, it starts by randomly shuffling the training data, and then
partitions it into mini-batches of the appropriate size. This is an easy way of sampling randomly
from the training data. Then for each mini_batch we apply a single step of gradient descent. This
is done by the code self.update_mini_batch(mini_batch, eta), which updates the network
weights and biases according to a single iteration of gradient descent, using just the training data
in mini_batch. Here’s the code for the update_mini_batch method:

def update mini batch(self, mini batch , eta):

"""Update the network’s weights and biases by applying

gradient descent using backpropagation to a single mini batch.

The ‘‘mini batch ‘‘ is a list of tuples ‘‘(x, y)‘‘, and ‘‘eta‘‘

is the learning rate."""

nabla b = [np.zeros(b.shape) for b in self.biases]

nabla w = [np.zeros(w.shape) for w in self.weights]

for x, y in mini batch:

27

delta nabla b , delta nabla w = self.backprop(x, y)

nabla b = [nb+dnb for nb, dnb in zip(nabla b , delta nabla b)]

nabla w = [nw+dnw for nw, dnw in zip(nabla w , delta nabla w)]

self.weights = [w−(eta/len(mini batch))∗nw
for w, nw in zip(self.weights, nabla w)]

self.biases = [b−(eta/len(mini batch))∗nb
for b, nb in zip(self.biases, nabla b)]

Most of the work is done by the line

delta nabla b , delta nabla w = self.backprop(x, y)

This invokes something called the backpropagation algorithm, which is a fast way of computing the
gradient of the cost function. So update_mini_batch works simply by computing these gradients
for every training example in the mini_batch, and then updating self.weights and self.biases

appropriately.

I’m not going to show the code for self.backprop right now. We’ll study how backpropagation
works in the next chapter, including the code for self.backprop. For now, just assume that
it behaves as claimed, returning the appropriate gradient for the cost associated to the training
example x.

Let’s look at the full program, including the documentation strings, which I omitted above. Apart
from self.backprop the program is self-explanatory — all the heavy lifting is done in self.SGD

and self.update_mini_batch, which we’ve already discussed. The self.backprop method makes
use of a few extra functions to help in computing the gradient, namely sigmoid_prime, which
computes the derivative of the σ function, and self.cost_derivative, which I won’t describe
here. You can get the gist of these (and perhaps the details) just by looking at the code and
documentation strings. We’ll look at them in detail in the next chapter. Note that while the
program appears lengthy, much of the code is documentation strings intended to make the code
easy to understand. In fact, the program contains just 74 lines of non-whitespace, non-comment
code. All the code may be found on GitHub here (https://github.com/mnielsen/neural-networks-
and-deep-learning/blob/master/src/network.py).

"""

network.py

~~~~~~~~~~

A module to implement the stochastic gradient descent learning

algorithm for a feedforward neural network. Gradients are calculated

using backpropagation. Note that I have focused on making the code

simple, easily readable, and easily modifiable. It is not optimized ,

and omits many desirable features.

"""

#### Libraries

# Standard library

import random

28



# Third−party libraries
import numpy as np

class Network(object):

def init (self, sizes):

"""The list ‘‘sizes‘‘ contains the number of neurons in the

respective layers of the network. For example, if the list

was [2, 3, 1] then it would be a three−layer network, with the
first layer containing 2 neurons, the second layer 3 neurons,

and the third layer 1 neuron. The biases and weights for the

network are initialized randomly, using a Gaussian

distribution with mean 0, and variance 1. Note that the first

layer is assumed to be an input layer, and by convention we

won’t set any biases for those neurons, since biases are only

ever used in computing the outputs from later layers."""

self.num layers = len(sizes)

self.sizes = sizes

self.biases = [np.random.randn(y, 1) for y in sizes[1:]]

self.weights = [np.random.randn(y, x)

for x, y in zip(sizes[:−1], sizes[1:])]

def feedforward(self, a):

"""Return the output of the network if ‘‘a‘‘ is input."""

for b, w in zip(self.biases, self.weights):

a = sigmoid(np.dot(w, a)+b)

return a

def SGD(self, training data , epochs, mini batch size , eta,

test data=None):

"""Train the neural network using mini−batch stochastic
gradient descent. The ‘‘training data ‘‘ is a list of tuples

‘‘(x, y)‘‘ representing the training inputs and the desired

outputs. The other non−optional parameters are
self−explanatory. If ‘‘test data ‘‘ is provided then the

network will be evaluated against the test data after each

epoch, and partial progress printed out. This is useful for

tracking progress , but slows things down substantially."""

if test data: n test = len(test data)

n = len(training data)

for j in xrange(epochs):

random.shuffle(training data)

mini batches = [

training data[k:k+mini batch size]

for k in xrange(0, n, mini batch size)]

for mini batch in mini batches:

self.update mini batch(mini batch , eta)

29



if test data:

print "Epoch {0}: {1} / {2}".format(
j, self.evaluate(test data), n test)

else:

print "Epoch {0} complete".format(j)

def update mini batch(self, mini batch , eta):

"""Update the network’s weights and biases by applying

gradient descent using backpropagation to a single mini batch.

The ‘‘mini batch ‘‘ is a list of tuples ‘‘(x, y)‘‘, and ‘‘eta‘‘

is the learning rate."""

nabla b = [np.zeros(b.shape) for b in self.biases]

nabla w = [np.zeros(w.shape) for w in self.weights]

for x, y in mini batch:

delta nabla b , delta nabla w = self.backprop(x, y)

nabla b = [nb+dnb for nb, dnb in zip(nabla b , delta nabla b)]

nabla w = [nw+dnw for nw, dnw in zip(nabla w , delta nabla w)]

self.weights = [w−(eta/len(mini batch))∗nw
for w, nw in zip(self.weights, nabla w)]

self.biases = [b−(eta/len(mini batch))∗nb
for b, nb in zip(self.biases, nabla b)]

def backprop(self, x, y):

"""Return a tuple ‘‘(nabla b , nabla w)‘‘ representing the

gradient for the cost function C x. ‘‘nabla b ‘‘ and

‘‘nabla w ‘‘ are layer−by−layer lists of numpy arrays, similar
to ‘‘self.biases‘‘ and ‘‘self.weights ‘‘."""

nabla b = [np.zeros(b.shape) for b in self.biases]

nabla w = [np.zeros(w.shape) for w in self.weights]

# feedforward

activation = x

activations = [x] # list to store all the activations , layer by layer

zs = [] # list to store all the z vectors, layer by layer

for b, w in zip(self.biases, self.weights):

z = np.dot(w, activation)+b

zs.append(z)

activation = sigmoid(z)

activations.append(activation)

# backward pass

delta = self.cost derivative(activations[−1], y) ∗ \
sigmoid prime(zs[−1])

nabla b[−1] = delta
nabla w[−1] = np.dot(delta, activations[−2].transpose())
# Note that the variable l in the loop below is used a little

# differently to the notation in Chapter 2 of the book. Here,

# l = 1 means the last layer of neurons, l = 2 is the

# second−last layer, and so on. It’s a renumbering of the

30



# scheme in the book, used here to take advantage of the fact

# that Python can use negative indices in lists.

for l in xrange(2, self.num layers):

z = zs[−l]
sp = sigmoid prime(z)

delta = np.dot(self.weights[−l+1].transpose(), delta) ∗ sp
nabla b[−l] = delta
nabla w[−l] = np.dot(delta, activations[−l−1].transpose())

return (nabla b , nabla w)

def evaluate(self, test data):

"""Return the number of test inputs for which the neural

network outputs the correct result. Note that the neural

network’s output is assumed to be the index of whichever

neuron in the final layer has the highest activation."""

test results = [(np.argmax(self.feedforward(x)), y)

for (x, y) in test data]

return sum(int(x == y) for (x, y) in test results)

def cost derivative(self, output activations , y):

"""Return the vector of partial derivatives \partial C x /
\partial a for the output activations."""
return (output activations−y)

#### Miscellaneous functions

def sigmoid(z):

"""The sigmoid function."""

return 1.0/(1.0+np.exp(−z))

def sigmoid prime(z):

"""Derivative of the sigmoid function."""

return sigmoid(z)∗(1−sigmoid(z))

How well does the program recognize handwritten digits? Well, let’s start by loading in the MNIST
data. I’ll do this using a little helper program, mnist_loader.py, to be described below. We
execute the following commands in a Python shell,

>>> import mnist loader

>>> training data , validation data , test data = \
... mnist loader.load data wrapper()

Of course, this could also be done in a separate Python program, but if you’re following along it’s
probably easiest to do in a Python shell.

After loading the MNIST data, we’ll set up a Network with 30 hidden neurons. We do this after
importing the Python program listed above, which is named network,

>>> import network

>>> net = network.Network([784, 30, 10])

31



Finally, we’ll use stochastic gradient descent to learn from the MNIST training_data over 30
epochs, with a mini-batch size of 10, and a learning rate of η = 3.0,

>>> net.SGD(training data , 30, 10, 3.0, test data=test data)

Note that if you’re running the code as you read along, it will take some time to execute — for
a typical machine (as of 2015) it will likely take a few minutes to run. I suggest you set things
running, continue to read, and periodically check the output from the code. If you’re in a rush
you can speed things up by decreasing the number of epochs, by decreasing the number of hidden
neurons, or by using only part of the training data. Note that production code would be much,
much faster: these Python scripts are intended to help you understand how neural nets work, not
to be high-performance code! And, of course, once we’ve trained a network it can be run very
quickly indeed, on almost any computing platform. For example, once we’ve learned a good set of
weights and biases for a network, it can easily be ported to run in Javascript in a web browser,
or as a native app on a mobile device. In any case, here is a partial transcript of the output of
one training run of the neural network. The transcript shows the number of test images correctly
recognized by the neural network after each epoch of training. As you can see, after just a single
epoch this has reached 9,129 out of 10,000, and the number continues to grow,

Epoch 0: 9129 / 10000

Epoch 1: 9295 / 10000

Epoch 2: 9348 / 10000

...

Epoch 27: 9528 / 10000

Epoch 28: 9542 / 10000

Epoch 29: 9534 / 10000

That is, the trained network gives us a classification rate of about 95 percent — 95.42 percent at its
peak (”Epoch 28”)! That’s quite encouraging as a first attempt. I should warn you, however, that
if you run the code then your results are not necessarily going to be quite the same as mine, since
we’ll be initializing our network using (different) random weights and biases. To generate results
in this chapter I’ve taken best-of-three runs.

Let’s rerun the above experiment, changing the number of hidden neurons to 100. As was the case
earlier, if you’re running the code as you read along, you should be warned that it takes quite a
while to execute (on my machine this experiment takes tens of seconds for each training epoch), so
it’s wise to continue reading in parallel while the code executes.

>>> net = network.Network([784, 100, 10])

>>> net.SGD(training data , 30, 10, 3.0, test data=test data)

Sure enough, this improves the results to 96.59 percent. At least in this case, using more hidden
neurons helps us get better results.

Of course, to obtain these accuracies I had to make specific choices for the number of epochs of
training, the mini-batch size, and the learning rate, η. As I mentioned above, these are known as
hyper-parameters for our neural network, in order to distinguish them from the parameters (weights

32



and biases) learnt by our learning algorithm. If we choose our hyper-parameters poorly, we can get
bad results. Suppose, for example, that we’d chosen the learning rate to be η = 0.001,

>>> net = network.Network([784, 100, 10])

>>> net.SGD(training data , 30, 10, 0.001, test data=test data)

The results are much less encouraging,

Epoch 0: 1139 / 10000

Epoch 1: 1136 / 10000

Epoch 2: 1135 / 10000

...

Epoch 27: 2101 / 10000

Epoch 28: 2123 / 10000

Epoch 29: 2142 / 10000

However, you can see that the performance of the network is getting slowly better over time. That
suggests increasing the learning rate, say to η = 0.01. If we do that, we get better results, which
suggests increasing the learning rate again. (If making a change improves things, try doing more!)
If we do that several times over, we’ll end up with a learning rate of something like η = 1.0 (and
perhaps fine tune to 3.0), which is close to our earlier experiments. So even though we initially
made a poor choice of hyper-parameters, we at least got enough information to help us improve
our choice of hyper-parameters.

In general, debugging a neural network can be challenging. This is especially true when the initial
choice of hyper-parameters produces results no better than random noise. Suppose we try the
successful 30 hidden neuron network architecture from earlier, but with the learning rate changed
to η = 100:

>>> net = network.Network([784, 30, 10])

>>> net.SGD(training data , 30, 10, 100.0, test data=test data)

At this point we’ve actually gone too far, and the learning rate is too high:

Epoch 0: 1009 / 10000

Epoch 1: 1009 / 10000

Epoch 2: 1009 / 10000

Epoch 3: 1009 / 10000

...

Epoch 27: 982 / 10000

Epoch 28: 982 / 10000

Epoch 29: 982 / 10000

Now imagine that we were coming to this problem for the first time. Of course, we know from
our earlier experiments that the right thing to do is to decrease the learning rate. But if we were
coming to this problem for the first time then there wouldn’t be much in the output to guide us
on what to do. We might worry not only about the learning rate, but about every other aspect
of our neural network. We might wonder if we’ve initialized the weights and biases in a way that

33



makes it hard for the network to learn? Or maybe we don’t have enough training data to get
meaningful learning? Perhaps we haven’t run for enough epochs? Or maybe it’s impossible for a
neural network with this architecture to learn to recognize handwritten digits? Maybe the learning
rate is too low? Or, maybe, the learning rate is too high? When you’re coming to a problem for
the first time, you’re not always sure.

The lesson to take away from this is that debugging a neural network is not trivial, and, just as for
ordinary programming, there is an art to it. You need to learn that art of debugging in order to
get good results from neural networks. More generally, we need to develop heuristics for choosing
good hyper-parameters and a good architecture. We’ll discuss all these at length through the book,
including how I chose the hyper-parameters above.

Earlier, I skipped over the details of how the MNIST data is loaded. It’s pretty straightforward. For
completeness, here’s the code. The data structures used to store the MNIST data are described in
the documentation strings — it’s straightforward stuff, tuples and lists of Numpy ndarray objects
(think of them as vectors if you’re not familiar with ndarrays):

"""

mnist loader

~~~~~~~~~~~~

A library to load the MNIST image data. For details of the data

structures that are returned , see the doc strings for ‘‘load data ‘‘

and ‘‘load data wrapper ‘‘. In practice, ‘‘load data wrapper ‘‘ is the

function usually called by our neural network code.

"""

Libraries

Standard library

import cPickle

import gzip

Third−party libraries
import numpy as np

def load data():

"""Return the MNIST data as a tuple containing the training data,

the validation data, and the test data.

The ‘‘training data ‘‘ is returned as a tuple with two entries.

The first entry contains the actual training images. This is a

numpy ndarray with 50,000 entries. Each entry is, in turn, a

numpy ndarray with 784 values, representing the 28 ∗ 28 = 784
pixels in a single MNIST image.

The second entry in the ‘‘training data ‘‘ tuple is a numpy ndarray

containing 50,000 entries. Those entries are just the digit

values (0...9) for the corresponding images contained in the first

entry of the tuple.

34

The ‘‘validation data ‘‘ and ‘‘test data ‘‘ are similar, except

each contains only 10,000 images.

This is a nice data format, but for use in neural networks it’s

helpful to modify the format of the ‘‘training data ‘‘ a little.

That’s done in the wrapper function ‘‘load data wrapper()‘‘, see

below.

"""

f = gzip.open(’../data/mnist.pkl.gz’, ’rb’)

training data , validation data , test data = cPickle.load(f)

f.close()

return (training data , validation data , test data)

def load data wrapper():

"""Return a tuple containing ‘‘(training data , validation data ,

test data)‘‘. Based on ‘‘load data ‘‘, but the format is more

convenient for use in our implementation of neural networks.

In particular , ‘‘training data ‘‘ is a list containing 50,000

2−tuples ‘‘(x, y)‘‘. ‘‘x‘‘ is a 784−dimensional numpy.ndarray
containing the input image. ‘‘y‘‘ is a 10−dimensional
numpy.ndarray representing the unit vector corresponding to the

correct digit for ‘‘x‘‘.

‘‘validation data ‘‘ and ‘‘test data ‘‘ are lists containing 10,000

2−tuples ‘‘(x, y)‘‘. In each case, ‘‘x‘‘ is a 784−dimensional
numpy.ndarry containing the input image, and ‘‘y‘‘ is the

corresponding classification , i.e., the digit values (integers)

corresponding to ‘‘x‘‘.

Obviously , this means we’re using slightly different formats for

the training data and the validation / test data. These formats

turn out to be the most convenient for use in our neural network

code."""

tr d , va d , te d = load data()

training inputs = [np.reshape(x, (784, 1)) for x in tr d[0]]

training results = [vectorized result(y) for y in tr d[1]]

training data = zip(training inputs , training results)

validation inputs = [np.reshape(x, (784, 1)) for x in va d[0]]

validation data = zip(validation inputs , va d[1])

test inputs = [np.reshape(x, (784, 1)) for x in te d[0]]

test data = zip(test inputs , te d[1])

return (training data , validation data , test data)

def vectorized result(j):

"""Return a 10−dimensional unit vector with a 1.0 in the jth

35

position and zeroes elsewhere. This is used to convert a digit

(0...9) into a corresponding desired output from the neural

network."""

e = np.zeros((10, 1))

e[j] = 1.0

return e

I said above that our program gets pretty good results. What does that mean? Good compared to
what? It’s informative to have some simple (non-neural-network) baseline tests to compare against,
to understand what it means to perform well. The simplest baseline of all, of course, is to randomly
guess the digit. That’ll be right about ten percent of the time. We’re doing much better than that!

What about a less trivial baseline? Let’s try an extremely simple idea: we’ll look at how dark an
image is. For instance, an image of a 2 will typically be quite a bit darker than an image of a 1,
just because more pixels are blackened out, as the following examples illustrate:

This suggests using the training data to compute average darknesses for each digit, 0, 1, 2, . . . , 9.
When presented with a new image, we compute how dark the image is, and then guess that it’s
whichever digit has the closest average darkness. This is a simple procedure, and is easy to code
up, so I won’t explicitly write out the code — if you’re interested it’s in the GitHub repository But
it’s a big improvement over random guessing, getting 2,225 of the 10,000 test images correct, i.e.,
22.25 percent accuracy.

It’s not difficult to find other ideas which achieve accuracies in the 20 to 50 percent range. If you
work a bit harder you can get up over 50 percent. But to get much higher accuracies it helps to
use established machine learning algorithms. Let’s try using one of the best known algorithms, the
support vector machine or SVM. If you’re not familiar with SVMs, not to worry, we’re not going
to need to understand the details of how SVMs work. Instead, we’ll use a Python library called
scikit-learn, which provides a simple Python interface to a fast C-based library for SVMs known as
LIBSVM.

If we run scikit-learn’s SVM classifier using the default settings, then it gets 9,435 of 10,000 test
images correct. (The code is available here: https://github.com/mnielsen/neural-networks-and-
deep-learning/blob/master/src/mnist svm.py) That’s a big improvement over our naive approach
of classifying an image based on how dark it is. Indeed, it means that the SVM is performing
roughly as well as our neural networks, just a little worse. In later chapters we’ll introduce new
techniques that enable us to improve our neural networks so that they perform much better than
the SVM.

That’s not the end of the story, however. The 9,435 of 10,000 result is for scikit-learn’s default
settings for SVMs. SVMs have a number of tunable parameters, and it’s possible to search for
parameters which improve this out-of-the-box performance. I won’t explicitly do this search, but
instead refer you to this blog post by Andreas Mueller if you’d like to know more (http://peekaboo-

36

vision.blogspot.de/2010/09/mnist-for-ever.html). Mueller shows that with some work optimizing
the SVM’s parameters it’s possible to get the performance up above 98.5 percent accuracy. In other
words, a well-tuned SVM only makes an error on about one digit in 70. That’s pretty good! Can
neural networks do better?

In fact, they can. At present, well-designed neural networks outperform every other technique for
solving MNIST, including SVMs. The current (2013) record is classifying 9,979 of 10,000 images
correctly. This was done by Li Wan, Matthew Zeiler, Sixin Zhang, Yann LeCun, and Rob Fergus.
We’ll see most of the techniques they used later in the book. At that level the performance is close
to human-equivalent, and is arguably better, since quite a few of the MNIST images are difficult
even for humans to recognize with confidence, for example:

I trust you’ll agree that those are tough to classify! With images like these in the MNIST data set
it’s remarkable that neural networks can accurately classify all but 21 of the 10,000 test images.
Usually, when programming we believe that solving a complicated problem like recognizing the
MNIST digits requires a sophisticated algorithm. But even the neural networks in the Wan et al
paper just mentioned involve quite simple algorithms, variations on the algorithm we’ve seen in
this chapter. All the complexity is learned, automatically, from the training data. In some sense,
the moral of both our results and those in more sophisticated papers, is that for some problems:

sophisticated algorithm ≤ simple learning algorithm + good training data.

8 Toward deep learning

While our neural network gives impressive performance, that performance is somewhat mysterious.
The weights and biases in the network were discovered automatically. And that means we don’t
immediately have an explanation of how the network does what it does. Can we find some way to
understand the principles by which our network is classifying handwritten digits? And, given such
principles, can we do better?

To put these questions more starkly, suppose that a few decades hence neural networks lead to
artificial intelligence (AI). Will we understand how such intelligent networks work? Perhaps the
networks will be opaque to us, with weights and biases we don’t understand, because they’ve been
learned automatically. In the early days of AI research people hoped that the effort to build an
AI would also help us understand the principles behind intelligence and, maybe, the functioning
of the human brain. But perhaps the outcome will be that we end up understanding neither the
brain nor how artificial intelligence works!

To address these questions, let’s think back to the interpretation of artificial neurons that I gave at
the start of the chapter, as a means of weighing evidence. Suppose we want to determine whether
an image shows a human face or not:

37

We could attack this problem the same way we attacked handwriting recognition — by using the
pixels in the image as input to a neural network, with the output from the network a single neuron
indicating either “Yes, it’s a face” or “No, it’s not a face”.

Let’s suppose we do this, but that we’re not using a learning algorithm. Instead, we’re going to
try to design a network by hand, choosing appropriate weights and biases. How might we go about
it? Forgetting neural networks entirely for the moment, a heuristic we could use is to decompose
the problem into sub-problems: does the image have an eye in the top left? Does it have an eye in
the top right? Does it have a nose in the middle? Does it have a mouth in the bottom middle? Is
there hair on top? And so on.

If the answers to several of these questions are “yes”, or even just “probably yes”, then we’d
conclude that the image is likely to be a face. Conversely, if the answers to most of the questions
are “no”, then the image probably isn’t a face.

Of course, this is just a rough heuristic, and it suffers from many deficiencies. Maybe the person
is bald, so they have no hair. Maybe we can only see part of the face, or the face is at an angle,
so some of the facial features are obscured. Still, the heuristic suggests that if we can solve the
sub-problems using neural networks, then perhaps we can build a neural network for face-detection,
by combining the networks for the sub-problems. Here’s a possible architecture, with rectangles
denoting the sub-networks. Note that this isn’t intended as a realistic approach to solving the
face-detection problem; rather, it’s to help us build intuition about how networks function. Here’s
the architecture:

38

It’s also plausible that the sub-networks can be decomposed. Suppose we’re considering the ques-
tion: “Is there an eye in the top left?” This can be decomposed into questions such as: “Is there
an eyebrow?”; “Are there eyelashes?”; “Is there an iris?”; and so on. Of course, these questions
should really include positional information, as well — “Is the eyebrow in the top left, and above
the iris?”, that kind of thing — but let’s keep it simple. The network to answer the question “Is
there an eye in the top left?” can now be decomposed:

Those questions too can be broken down, further and further through multiple layers. Ultimately,
we’ll be working with sub-networks that answer questions so simple they can easily be answered
at the level of single pixels. Those questions might, for example, be about the presence or absence
of very simple shapes at particular points in the image. Such questions can be answered by single
neurons connected to the raw pixels in the image.

The end result is a network which breaks down a very complicated question — does this image
show a face or not — into very simple questions answerable at the level of single pixels. It does
this through a series of many layers, with early layers answering very simple and specific questions
about the input image, and later layers building up a hierarchy of ever more complex and abstract
concepts. Networks with this kind of many-layer structure — two or more hidden layers — are
called deep neural networks.

Of course, I haven’t said how to do this recursive decomposition into sub-networks. It certainly
isn’t practical to hand-design the weights and biases in the network. Instead, we’d like to use
learning algorithms so that the network can automatically learn the weights and biases — and
thus, the hierarchy of concepts — from training data. Researchers in the 1980s and 1990s tried
using stochastic gradient descent and backpropagation to train deep networks. Unfortunately,
except for a few special architectures, they didn’t have much luck. The networks would learn, but
very slowly, and in practice often too slowly to be useful.

Since 2006, a set of techniques has been developed that enable learning in deep neural nets. These
deep learning techniques are based on stochastic gradient descent and backpropagation, but also
introduce new ideas. These techniques have enabled much deeper (and larger) networks to be
trained — people now routinely train networks with 5 to 10 hidden layers. And, it turns out that
these perform far better on many problems than shallow neural networks, i.e., networks with just a
single hidden layer. The reason, of course, is the ability of deep nets to build up a complex hierarchy
of concepts. It’s a bit like the way conventional programming languages use modular design and
ideas about abstraction to enable the creation of complex computer programs. Comparing a deep
network to a shallow network is a bit like comparing a programming language with the ability to
make function calls to a stripped down language with no ability to make such calls. Abstraction

39

takes a different form in neural networks than it does in conventional programming, but it’s just
as important.

40

