
MLISP: Machine Learning in Signal Processing

Lecture 9

Prof. V. I. Morgenshtern

Scribe: M. Elminshawi

Illustrations: The elements of statistical learning, Hastie, Tibshirani, Friedman

Agenda:

1. Multi-dimensional splines

2. Learning adversarial classifiers in high dimensions

3. Models beyond smoothness

4. A problem with Fourier transform

5. Short time Fourier transform

1 Multi-dimensional splines

Suppose x = [x1, x2] ∈ R2 and we have a set of basis functions

h1k(x1), k = 1, 2, . . . ,M1

for representing functions of coordinate x1, and likewise

h2k(x2), k = 1, 2, . . . ,M2

for coordinate x2. Then we can build the M1 ×M2 dimensional tensor basis:

h2Djk (x) = h1j(x1)h2k(x2), j = 1, 2, . . . ,M1, k = 1, 2, . . . ,M2.

With this basis we can represent two-dimensional functions:

h2D(x) =

M1∑
j=1

M2∑
k=1

θjkh
2D
jk (x).

Here is an example of the tensor basis in 2D:

1



Using this construction, we can fit the logistic regression

logit[P(ORANGE|x)] = h2D(x)Tθ

to the ORANGE and BLUE points dataset with M1 = M2 = 4. The logit function is the inverse
of the logistic (sigmoid) function:

logit(p) = g−1(p) = log

(
p

1− p

)
.

Here is the result:

The contour h2D(x)Tθ = 0 is plotted in purple and the Bayesian decision boundary for this problem
is in black.

2



The construction can be generalized to d dimensions with the tensor basis given by

hd−Dj1j2...jd
(x) = h1j1(x1)× . . .× hdjd(xd), jd = 1, 2, . . . ,M.

Note that the number of basis functions is Md, i.e., it is exponential in d. This is a yet another
manifestation of the curse of dimensionality.

2 Learning adversarial classifiers in high dimensions

Suppose that we have a 256-dimensional signal x = [x1, . . . , x256], as in the phoneme recognition
example. Let’s make a simplifying assumption: each xi can only take one of two values, either 0
or 1. How many possible signals there are? Clearly, 2256. Suppose that each of these 2256 signals
belongs either to class 0 (encoding ‘aa’) or to class 1 (encoding ‘ao’). Of corse, this is not a real
situation: in the real world, most of the high-dimenstional signals have no meaning and belong to
the class ‘noise’. However, let’s make the assumption that there are only two classes for the sake
of the argument. For each x ∈ {0, 1}256, let y = f(x) denote the correct answer, i.e., class to which
the signal belongs:

f : {0, 1}256 → {0, 1}.
The function f is chosen by nature and is hidden from us. Can we learn the classification function
f from data? How many data points are needed? Can we learn it using a linear classifier, such as
the linear or the logistic regression?

In the general case, we need 2256 data points, which is never available. Why? Suppose that the
function f(·) did not have any particular structure: it has been generated by nature randomly: for
each x ∈ {0, 1}256, f(x) was chosen to be 0 or 1 with probability 1/2 for each outcome. In this case,
there is no other way to learn f(·), except for memorizing f(x) for each possible x. This requires
a database with 2256 data points.

Can we express the memorization process via a linear model? Yes, if we use 2256 features. Con-
cretely, our underlying feature vector is [x1, . . . , x256]. From this, we can generate a new feature
vector of dimension 2256:

x̃ = [x̃1, . . . x̃2256 ]

where only one of the x̃i’s is nonzero, corresponding to the index of the binary vector [x1, . . . , x256]
in the ordered list of all 256-dimensional binary vectors (one-hot-vector encoding). Can we express
this encoding using, for example, polynomials? Yes. Here is the encoding:

x̃ =



(1− x1)(1− x2)× · · · × (1− x255)(1− x256)
(1− x1)(1− x2)× · · · × (1− x255)x256

...
(1− x1)(1− x2)× · · · × x255x256

...
(1− x1)x2 × · · · × x255x256

...
x1x2 × · · · × x255x256


.

Above, all possible combinations of terms of the type x and (1− x) are listed in the lexicographic
order. Each new feature is the a polynomial of degree 256 in the old features. We have used

3



exponentially many (in d = 256) such polynomials. (Think about how you could also use the
d-dimensional tensor splines from the previous subsection here.) It is not difficult to conclude that
in the new feature space there is a linear classifier that correctly separates the data:

I(x̃T
θ̂ > 0) = f(x) = y

for all x, where θ̂ = [θ̂1, . . . , θ̂2256 ]. Of corse, learning all the 2256 parameters of θ̂ (more than then
number of atoms in the universe) is never possible from data.

Which classification functions can we learn in high dimensions? What was special about the
phoneme recognition example so that we have successfully learned to separate ‘aa’ from ‘ao’
phonemes?

We can learn only those functions that are ‘simple’ in some way, i.e., there is structure in the
function and a corresponding simple decision rule. Random decision functions have no structure.
On the contrary, the function

f(x) =

{
0, if

∑256
i=1 xi > 128

1, otherwise.

is a function with structure and therefore is reasonably easy to learn from data.

Most of the functions are random, without structure. At the same time, it is an empirical fact that
most of the functions of interest in science and engineering are structured and simple.

For example, consider the function that classifies all images into two categories: there is a cat in
the image / there is no cat in the image. This is a simple function (which might not be obvious)
because humans and deep neural networks can learn it from a reasonably small amount of training
data. The fundamental reasons why this function is simple are (i) the images with cat represent a
tiny fraction of all possible images; (ii) to recognize a cat it is sufficient to recognize few of its basic
features: cat’s nose, cat’s ears, cat’s fur and so on; in other words this function can be represented
as a hierarchical composition of even simpler functions and those can be learned from data directly.
We will return to this point of compositionality when we study neural networks in the last part of
the class.

Another example of a simple function is the classifier of phonemes that we learned earlier:

f(x) ≈ I[g(xTHθ) > 0.5]

where I[·] is the indicator function and g(z) = 1/(1 − exp(−z)). This function is simple because
the decision function turned out to be a smooth function of frequency. There are few contiguous
intervals on the frequency axis with the property that all frequencies within those contiguous
intervals affect the classification function in the same way. Therefore, the 256 dimensional space
effectively becomes 12 dimensional. Even a very complex function of 12 variables can be learned
from data directly.

3 Models beyond smoothness: invitation to wavelets

Recall the example of phoneme classification from the previous lecture. In the example of audio
classification, we have seen how we can improve performance by using splines to smooth the data

4



and regularize the linear classifier. Concretely, our approach can be summarized as follows: For a
signal x ∈ R256 we would normally need 256 basis functions to represent x exactly. Instead, we
only used D = 12 basis functions h1(·), . . . , h12(·) and the functions are designed in such a way that
every function in the span of h1(·), . . . , h12(·) is smooth. The processed data is:

x∗m = [HTx]m =
256∑
j=1

hm(fj)xj = hT
mx.

Let us decompose x = xsmooth + xnon−smooth, where xsmooth is the projection of x onto the span
of h1(·), . . . , h12(·), and xnon−smooth is the projection of x onto the orthogonal complement of the
span of h1(·), . . . , h12(·). Then,

hT
mx = hT

m(xsmooth + xnon−smooth)

= hT
mx

smooth + hT
mx

non−smooth︸ ︷︷ ︸
0

= hT
mx

smooth.

We see that the non-smooth part of the data does not affect the coefficients x∗m, and hence does
not affect learning. This is filtering: the non-smooth part of signal happens to be irrelevant for
separation of ‘ao’ and ‘aa’ phonemes. Hence, removing that part improves the outcome.

Often, our true signal is far from smooth:

Discontinuities are important part of natural phenomena. For example, in images edges carry an
important information:

Wavelets are the tools that allow us to capture structures beyond smoothness and still separates
out the irrelevant part.

5



4 A problem with Fourier transform

Fourier transform reveals important information about a signal: its frequency content. If the
function f(t) is periodic on the interval [−π, π], it can be written as the Fourier series:

f(t) =
+∞∑

n=−∞
cnφn(t)

where

cn = 〈φn, f〉 =

∫ π

−π
φn(t)f(t)dt

and the basis functions are

φn(t) =
1√
2π
eint.

Importantly, the Fourier basis function form an orthonormal basis: 〈φn, φn〉 = 1 and 〈φn, φk〉 = 0
if n 6= k. This property makes all computations and algorithms very simple.

If x(t) represents a piece of music, then the Fourier coefficients {cn} reveal the tones that form that
piece of music.

The problem is that Fourier transform is a global transformation, a local change in the signal affects
the Fourier transform everywhere. Concretely, consider a function with one discontinuity. The first
5 terms of Fourier series approximate the function as follows:

The first 20 terms of Fourier series approximate it as follows:

6



The first 40 terms of Fourier series approximate it as follows:

We observe a jump of about 9% near the singularity, no matter how many terms we take. In
general, singularities (discontinuities in f(x) or in its derivatives) cause high frequency coefficients
(cn with large n) in the Fourier series

f(t) =
1√
π

+∞∑
n=−∞

cne
int

to be large. Note that the singularity is only in one point, but it causes all cn (for large n) to be
large. This is bad for two reasons:

(1) If there is even one singularity in the signal, then many Fourier coefficients will be large.
Hence, we cannot use Fourier coefficients for efficient signal compression.

(2) The Fourier series tells us nothing about the time location of an interesting features in the
signal. For example, consider two signals:

For both signals c100 is large, but the information on where in time does the frequency burst
happen is not immediately available.

5 Short time Fourier transform

One possible solution for the frequency localization problem is to use the window function like this:

7



and calculate that Fourier coefficients for the windowed function

f(t) · g(t− kt0).

Specifically

cnk =
1√
2π

∫ π

−π
f(t)g(t− kt0)e−intdt.

This is the short-time Fourier transform. It decomposes the 1D signal into the 2D time-frequency
representation (k indexes time, n indexes frequency) like this:

This representation is very similar to the way people write the sheet music. Such representation is
often useful: for example, the Shazam algorithm for music recognition is based on it.

Note however that the functions
gnk(t) = g(t− kt0)eint

are not orthogonal, unlike φn(t) = 1√
2π
eint in Fourier series. Therefore these functions do not form

a nice basis. We need something better.

8


