
MLISP: Machine Learning in Signal Processing

Lecture 8

Prof. V. I. Morgenshtern

Scribe: M. Elminshawi

Illustrations: The elements of statistical learning, Hastie, Tibshirani, Friedman

Agenda:

1. Logistic regression

2. Phoneme recognition example

1 Logistic regression

Our goal in this lecture is to apply splines to the problem of speech-to-text conversion. Concretely,
based on the sound recording, we want to distinguish between two phonemes “aa” and “ao” that
are really difficult to distinguish. This is a two class classification problem.

The simplest algorithm we already know for a two class classification problem is the linear regression
followed by thresholding. Let’s denote the labels of the two classes by 0 (encoding “aa”) and 1
(encoding “ao”). Then, this method amounts to learning a coefficient vector θ and using the
decision rule:

If xTθ ≤ 0.5 predict y = 0

else predict y = 1.

Note that the class identity is predicted directly.

More accurate results can be obtained using the logistic regression. In contrast to predicting the
class identity directly, in logistic regression we predict the probability:

P[y = 1|x = x].

This probability is modeled by a linear function of the features followed a nonlinearity:

P[y = 1|x = x] = hθ(x)

with

hθ(x) = g(xT
θ) =

1

1 + e−xTθ
.

Above, the parameter θ is estimated from data and g(z) = 1
1+e−z is called the logit function or the

sigmoid function. It looks like this:

1

Note that:
g(z)→ 1 as z →∞
g(z)→ 0 as z → −∞

it is bounded between 0 and 1 and hence it can represent probability. Therefore, hθ(x) is also
bounded between 0 and 1.

To make sure that probabilities sum up to one, we set:

P[y = 0|x = x] = 1− P[y = 1|x = x] = 1− 1

1 + e−xTθ
=

e−x
Tθ

1 + e−xTθ
.

For future reference, let’s calculate the derivative of g(z):

g′(z) =
d

dz

1

1 + e−z

=
1

(1 + e−z)2
e−z

=
1

(1 + e−z)
·
(

1− 1

1 + e−z

)
= g(z)(1− g(z)).

How do we fit the parameters?

Logistic regression is a special case of generalized linear models (GLMs). To fit generalized linear
models, people usually use the principle of “maximum likelihood”. The main motivation for this
choice is that it leads to simple formulas and elegant algorithms. There are also statistical optimality
theorems that show that maximum likelihood estimation is optimal under certain assumptions. The
principle is also intuitively meaningful.

Recall that we are trying to model probabilities as follows:

P[y = 1 | x = x; θ] = hθ(x) (1)

P[y = 0 | x = x; θ] = 1− hθ(x). (2)

Above, x are random variables and θ are fixed parameters of the model. This can be written more
compactly as:

P[y = y|x = x; θ] = (hθ(x))y (1− hθ(x))1−y .

2

Assume we have n training examples of the form (y(i),x(i)), i = 1, . . . , n that were generated
independently. Let y = [y(1), . . . , y(n)]T and stack all vectors x(i) as row-vectors into matrix X.
With these notations we can write:

P[y = y|X = X; θ] =
n∏
i=1

P[y(i) = y(i)|x(i) = x(i); θ]

=
n∏
i=1

(
hθ(x(i))

)y(i) (
1− hθ(x(i))

)1−y(i)
.

The function L(θ) = P[y = y|X = X; θ] when considered as a function of θ is called the likelihood
function. More precisely, this is the likelihood of the parameters θ, given the observed data y,X.
Likelihood describes the plausibility of a model parameter value, given specific observed data. In
order to fit θ to the data, the principle of maximum likelihood prescribes to maximize the likelihood
over all choices of θ:

θ̂ = arg max
θ

L(θ).

It is easier to minimize the negative log-likelihood:

l(θ) = − logL(θ)

= −
n∑
i=1

(
y(i) log hθ(x(i)) + (1− y(i)) log(1− hθ(x(i)))

)
.

This function can be proven to be convex. Hence, we can minimize it via the gradient descent
algorithm. Let’s start by working with a single training example (x, y):

∂

∂θj
l(θ) = −

(
y

1

g(xTθ)
− (1− y)

1

1− g(xTθ)

)
∂

∂θj
g(xT

θ)

= −
(
y

1

g(xTθ)
− (1− y)

1

1− g(xTθ)

)
g(xT

θ)(1− g(xT
θ))

∂

∂θj
xT

θ

= −
(
y(1− g(xT

θ))− (1− y)g(xT
θ)
)

[x]j

= − (y − hθ(x)) [x]j

where [x]j denotes the jth component of x and we used that g′(z) = g(z)(1 − g(z)) as derived
above.

Returning to the case when we have n data points, this gives us the following stochastic gradient
descent algorithm. Repeat until convergence:

for i in [1 : n] :

θj := θj + α
(
y(i) − hθ(x(i))

)
[x(i)]j for every j.

To get the batched gradient descent algorithm, just sum over i in the formula above.

This is the same rule that we had for linear regression with the only difference that

hθ(x) = xT
θ

3

for linear regression, and now it is a nonlinear function

hθ(x) =
1

1 + e−xTθ
.

This is not a coincidence because both models belong to the same general class: generalized linear
models.

2 Phoneme recognition example

We now have all the tools we need to do speach-to-text conversion. In the figure below we see 15
log-periodograms for each of the two phonemes “aa” and “ao” that are really difficult to distinguish:

Log-periodogram is x(f) = log |ŝ(f)|2, where ŝ(·) denotes the Fourier transform of s(·). We quan-
tized the frequency, f , to make x(f) a p = 256 dimensional vector.

First let’s fit a logistic regression directly in this 256 dimensional space. From the discussion before
we can see that for logistic model, the log-likelihood ratio is a linear function of the features:

log
P(ao|x = x)

P(aa|x = x)
= log

1
1+exp(−

∫
x(f)θ(f)df)

exp(−
∫
x(f)θ(f)df)

1+exp(−
∫
x(f)θ(f)df)

=

∫
x(f)θ(f)df ≈

256∑
j=1

x(fj)θ(fj) =
256∑
j=1

xjθj .

The coefficients θj compute a contrast function and will have appreciable values in regions of
frequency where log-periodograms differ between the two classes. In the following figure, we see
(the black line) the coefficients θj of the logistic regression model fit to a training sample of 1000
(1000 > 256) examples:

4

The black line is very jerky. This is because the values of x(f) for nearby frequencies f1 and f2 are
highly correlated. For example, if for some frequency, say j = 101, the model chose a coefficient
θj that is too large and positive, it tries to compensate for that error by setting the coefficient for
j = 102 to a large negative value. Also observe that we only have about 1000/256 = 4 training
examples per degree of freedom in the model, which is little. Therefore, before we do learning,
it might be a good idea to reduce the dimensionality of the problem. To do so, we can force the
coefficients to vary smoothly as a function of frequency. When we enforce smoothness, we obtain
the red line in the figure above. This immediately makes the solution more interpretable: low
frequencies provide most of discriminative power. We also get a much more accurate classifier.

Raw Regularized

Training Error 0.080 0.185

Test Error 0.255 0.158

The improvement can be attributed to the fact that the regularized model averages over the nearby
data points and provides denoising.

We can use cubic splines to enforce smoothness of θ(f). Take 8 knots uniformly places over
1, 2, . . . , 256. According to the formula derived in the previous lecture this generates a system of
splines with

D = (9 regions)× (4 parameters per region)− (8 knots)× (3 constraints per knot) = 12

5

basis functions (degrees of freedom). The 12 basis functions in this case read:

h1(x) = 1

h2(x) = x

h3(x) = x2

h4(x) = x3

h5(x) = (x− ε1)3+
h6(x) = (x− ε2)3+
h7(x) = (x− ε3)3+
h8(x) = (x− ε4)3+
h9(x) = (x− ε5)3+
h10(x) = (x− ε6)3+
h11(x) = (x− ε7)3+
h12(x) = (x− ε8)3+.

Require that θ(f) belongs to the span of these basis function. Mathematically, this means that
θ(f) can be written as

θ(f) =

D∑
m=1

hm(f)βm

with some coefficients βm,m = 1, . . . , 12 that are to be estimated. For discrete set of frequencies
fj = 1, . . . , 256 we can now write

θ = Hβ

where θ = [θ(f1), . . . , θ(f256)]
T and H is p × D basis matrix of cubic splines whose elements are

Hjm = hm(fj).

Since xTθ = xTHβ, we can change variables: x∗ = HTx and fit β by a linear logistic regression on
x∗. The fitted coefficients are denoted β̂. The red curve is

θ̂(f) =
D∑

m=1

hm(f)β̂m = hT(f)β̂

where h(f) = [h1(f), . . . , hD(f)]T.

Preprocessing of high dimensional features is a very powerful method of improving learning algo-
rithms.

6

