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1 Bias and variance for linear regression

Suppose now that the true relationship between y and x is linear and that there is noise

y = xTθ + n

where n ∼ N (0, σ2). In this lecture we will assume that the input variables x come from a random
distribution, for example, they may be uniformly distributed in a box [−1, 1]p in p-dimensional
space.

Let x0 be an arbitrary test point. Then the corresponding output is y0 = xT
0 θ + n0. Note that

E[y0] = E[xT
0 θ + n0] = xT

0 θ.

Therefore, xT
0 θ is our ideal answer at test time. As before, our estimate at test time is

ŷ0 = xT
0 θ̂

where
θ̂ = (XTX)−1XTy.

Above, X is the input data matrix composed of rows (x(1))T, . . . , (x(n))T, the data points in the
training set; y = [y(1), . . . ,y(n)]T are the output variables in the training set; n is the size of the
training set. Clearly θ̂ is random, even though we do not use our special font to denote that.

Now compute expected prediction error in this case:

EPE(x0) = Ey0|x0=x0
ET (y0 − ŷ0)

2.

Above, ET denotes expectation over the randomness in the training data generation, i.e. over noise
and over the randomness in the data points X. The expectation Ey0|x0=x0

is with respect to noise
at test time.
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Let’s simplify the expression for the expected prediction error. First add and subtract our ideal
answer, E[y0] = xT

0 θ:

Ey0|x0=x0
ET (y0 − ŷ0)

2 = Ey0|x0=x0
ET (y0 − xT

0 θ + xT
0 θ− ŷ0)

2

= Var(y0|x0 = x0) + Ey0|x0=x0
ET (xT

0 θ− ŷ0)
2 + 2Ey0|x0=x0

ET (y0 − xT
0 θ)(xT

0 θ− ŷ0)︸ ︷︷ ︸
0

.

To see that the last term is zero note that y0−xT
0 θ = n0 is the test-time noise, which is zero mean

and independent of xT
0 θ− ŷ0, which contains only the randomness of the training set.

Next, let’s consider the second term:

Ey0|x0=x0
ET (xT

0 θ− ŷ0)
2 = Ey0|x0=x0

ET (ŷ0 − ET ŷ0 + ET ŷ0 − xT
0 θ)2

= Ey0|x0=x0
ET (ŷ0 − ET ŷ0)

2 + Ey0|x0=x0
ET (xT

0 θ− ET ŷ0)
2

+ 2Ey0|x0=x0
ET (ŷ0 − ET ŷ0)(ET ŷ0 − xT

0 θ)︸ ︷︷ ︸
0

. (1)

Above, xT
0 θ− ET ŷ0 is nonrandom and ET (ŷ0 − ET ŷ0) = ET (ŷ0)− ET (ŷ0) = 0; therefore the last

term is zero.

Again, since xT
0 θ− ET ŷ0 is nonrandom, the second term in (1) can be written as:

Ey0|x0=x0
ET (xT

0 θ− ET ŷ0)
2 = (xT

0 θ− ET ŷ0)
2 = (Bias(ŷ0))

2 .

This is the squared bias term. It measures how far ET (ŷ0) is from the ideal estimate, xT
0 θ. In this

case, the squared bias is zero. This can be seen as follows. First observe that:

ŷ0 = xT
0 θ̂ = xT

0 θ + xT
0 (θ̂− θ).

Now,

θ̂− θ = (XTX)−1XTy− θ

= (XTX)−1XTX θ + (XTX)−1XTn− θ

= θ + (XTX)−1XTn− θ

= (XTX)−1XTn,

where n denotes the n-dimensional vector of noise in the training set. Therefore,

xT
0 (θ̂− θ) = xT

0 (XTX)−1XTn

and so

ŷ0 = xT
0 θ +

n∑
i=1

ni

[
xT
0 (XTX)−1XT

]
i
. (2)

Taking the expectation of the last expression and using that ni is independent of the choice of
training data points in

[
xT
0 (XTX)−1XT

]
i
, we conclude:

ET ŷ0 = xT
0 θ +

n∑
i=1

ET [ni]ET
[
xT
0 (XTX)−1XT

]
i

= xT
0 θ
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so that
(Bias(ŷ0))

2 = (xT
0 θ− ET ŷ0)

2 = 0 (3)

as claimed above.

Putting pieces together:

EPE(x0) = Var(y0|x0 = x0)︸ ︷︷ ︸
Var(xT

0θ+n0)=σ2

+Ey0|x0=x0
ET (ŷ0 − ET (ŷ0))

2︸ ︷︷ ︸
VarT (ŷ0)

+ (Bias(ŷ0))
2︸ ︷︷ ︸

0

.

The first term is the additional variance σ2 in the expected prediction error since our target is not
deterministic. Let us analyze the second term, which is the variance in our predictions due to the
randomness in the training set. Starting from (2) and using ET (ŷ0) = xT

0 θ, we have:

VarT (ŷ0) = ET

(
n∑
i=1

ni

[
xT
0 (XTX)−1XT

]
i

)2

=
∑
i,j

ET [ninj ]︸ ︷︷ ︸
0 if i 6=j

ET
[
xT
0 (XTX)−1XT

]
i

[
xT
0 (XTX)−1XT

]
j

= σ2 ET ‖xT
0 (XTX)−1XT‖22

= σ2 ET xT
0 (XTX)−1XTX(XTX)−1x0

= σ2 ET xT
0 (XTX)−1x0.

We observe that the variance depends on the point x0.

To analyze this expression consider the case where we have a lot of training data, i.e. n is large
and for simplicity assume E[x] = 0.

Under these assumptions,
XTX→ nCov(x).

To see this consider components of this matrix.

For example,
1

n
[XTX]1,1 =

1

n

∑
i

Xi1Xi1 → E[x2
1], n→∞. (4)

Above, xi denotes the ith component of the vector x and the last step follows from independence
of X1i over i, and the law of large numbers.

Similarly,
1

n
[XTX]1,2 =

1

n

∑
i

Xi1Xi2 → E[x1x2], n→∞. (5)

Next, assume that the test point x0 is drawn randomly from the same distribution as the points in
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the test set. Then we can average the expected prediction error over this choice:

Ex0 EPE(x0)→ σ2 + Ex0 x
T
0 Cov(x)−1x0

σ2

n

= σ2 +
σ2

n
Ex0 tr(xT0 Cov(x)−1x0)

= σ2 +
σ2

n
Ex0 tr(Cov(x)−1x0x

T
0 )

= σ2 +
σ2

n
tr(Cov(x)−1 Ex0 [x0x

T
0 ])

= σ2 +
σ2

n
tr(Cov(x)−1Cov(x)︸ ︷︷ ︸

Ip

)

= σ2
p

n
+ σ2

where we used that tr(Ip) = p.

We see that the expected prediction error increases linearly as a function of p with the slope σ2/n.
Hence the expected prediction error is small if n is large or σ2 is small. We have avoided the curse of
dimensionality by putting heavy restrictions on the model class. We have no bias at all. However,
if the model is wrong all bets are off.

2 Summary: linear regression vs. nearest neighbors algorithm

We conclude that linear regression has very desirable properties. If the true underlying model is
linear, the linear regression has no bias and its variance increases only mildly with the number
of variables in the model, p. However, if the underlying model is nonlinear, we might generate
very large estimation errors because of the model mismatch. The nearest neighbors algorithm can
flexibly adapt to any model. However, its bias is huge even in moderately small dimensions, p = 10.
The art of machine learning is to design algorithms between these two extremes, well adapted to
the problem at hand.
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