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1. Basics of statistical decision theory
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3. Conditional expectation as the optimal predictor

4. Conditional expectation in the linear case

5. Maximum conditional probability as the optimal classifier

1 Basics of statistical decision theory

In this lecture we will touch upon the basics of statistical decision theory. Bayesian setup is the case
in which the joint probability distribution from which our data was generated is known to us. We
will see that in this case, there is an optimal solution to the regression and the classification prob-
lems. These are known as ‘Bayes optimal predictors/classifiers’. In practice, the joint probability
distribution is never known. We will see how the two algorithms, the nearest neighbors predictor
and the linear model, attempt to approximate the unachievable optimal Bayesian solution.

2 Bayes optimal predictor: condition expectation

Let x ∈ Rp denote a real valued random input vector, and y ∈ R a real valued output vector.
Assume that (x , y) pairs are drawn from a joint probability distribution Px,y(·, ·).

Notation: we will use the notation and write x for random vectors, y for random scalars (not as
bold as vectors), x for non-random vectors, y for non-random scalars.

Example: For example we might have the joint distribution Px,y(·, ·) defined (implicitly) as follows.
The house size, x1 ∼ U [70, 200] sq. meters. The number of bedrooms, x2 = x1/35 + U [−1, 0, 1].
The house price y = α1x1 + α2x2 + N (0, 100000) US dollars. Here and in the future, U denotes
the uniform distribution and N denotes the Gaussian distribution.

Recall, we seek a function h(·) for predicting y given x. Let us use the squared error loss as before:

L(y, h(x)) = (y − h(x))2. (1)
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Then the expected prediction error is given by:

EPE(h) = E
{

(y − h(x))2
}

(2)

=

∫
(y − h(x))2p(x, y)dxdy

where p(·, ·) = px,y(·, ·) denotes the joint probability density function of (x,y). In the Bayesian
formulation, the goal is to find h(·) that minimizes EPE(h).

Using the formula for conditional expectation:

EPE(h) = Ex Ey|x
{

(y − h(x))2|x
}
. (3)

Therefore, we can minimize EPE point-wise:

ĥ(x) = arg min
c

Ey|x
{

(y − c)2|x = x
}

(4)

for each x. The solution is ĥ(x) = E {y|x = x}, which is also known as the regression function.

Proof: The minimum is achieved at the point where the derivative of the function is zero:

d

dc
Ey|x

{
(y − c)2|x = x

}
= 0 (5)

⇔ −
∫
py|x(y|x = x)2(y − c)dy = 0 (6)

⇔ c =

∫
y
py|x(y|x = x)ydy (7)

⇔ c = E{y|x = x}. (8)

2.1 Nearest neighbors as an approximation to optimal Bayes solution

In practice we cannot use the ĥ(x) = E{y|x = x} formula directly because we don’t know the joint
probability density px,y(·, ·), which is the whole point of learning.

The nearest-neighbor methods attempt to directly implement the optimal recipe using the training
data (x(i),y(i)) to estimate E{y|x = x}. Specifically, at each point x, we average all those y(i)’s
with the corresponding inputs x(i) ≈ x:

ĥNN(x) = Ave
(
y
(i)|x(i) ∈ Nk(x)

)
=

1∣∣Nk(x)
∣∣ ∑
i:x(i)∈Nk(x)

y
(i) (9)

where “Ave” denotes the average, and Nk(x) is the neighborhood consisting of the k points in the
training set that are the closest to x.

If we have a lot of data: n, k →∞ such that k/n→ 0, then: ĥNN(x)→ E{y|x = x} = ĥ(x).

To see this intuitively, consider a special case and assume that we only have two features, x ∈
[0, 1] × [0, 1] and that px(x) is uniform over the set X = [0, 1] × [0, 1]. Let |X | denote the area of
X , |X | = 1 in this case. By definition,

Ey|x{y|x = x} =

∫
y
y py|x(y|x = x)dy. (10)
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Let N(x) be the area around x that is roughly equal to Nk(x). Assume for simplicity that the
neighborhoods Nk(x) are all the same size for all x (follows from uniformity assumption). Then,
starting from (10):

Ey|x{y|x = x} =
1

|N(x)|

∫
x′∈N(x)

∫
y
y py|x(y|x = x)px(x

′)dx′dy

≈ 1

|N(x)|

∫
x′∈N(x)

∫
y
y py|x(y|x = x′)px(x

′)dx′dy

=
1

|N(x)|

∫
x′∈N(x)

∫
y
y py,x(x

′, y)dx′dy

≈ Ave
(
y
(i)|x(i) ∈ Nk(x)

)
.

Above, in the second equality we assumed that the function py|x(y|x = x′) is a smooth function of
x′ and does not change much in the neighborhood x′ ∈ N(x).

Isn’t this an ideal universal learning method?

In low dimensions this is true. However when dimensionality gets large we run into very serious
problems. As we will see soon, the metric size of k-neighborhood gets very large as the dimension
gets large. Therefore, nearest neighborhood becomes a very poor surrogate for conditioning.

2.2 Linear regression as an approximation to Bayes solution in the linear setting

How does the least squares algorithm we discussed before fit into the Bayesian theory? Suppose
that from our prior knowledge of the problem domain we decide to make an additional assumption
on the functional form of the regression function h(·). Specifically, assume that h(·) is linear:
h(x) = xTθ.

Plugging this into (2) and differentiating to find the minimum of EPE(θ), we can solve for θ:

θ
∗ =

[
E{xxT}

]−1
E{xy}. (11)

Proof:

θ̂ = arg min
θ

E{[y − xTθ]2} (12)

⇔ d

dθ̂

∫
p(x, y)[y − xT

θ̂]2dxdy = 0 (13)

⇔
∫
p(x, y)2x[y − xT

θ̂]dxdy = 0 (14)

⇔
∫
p(x, y)xxT

θ̂dxdy =

∫
p(x, y)xydxdy (15)

⇔ E[xxT]θ̂ = E[xy] (16)

⇒ θ̂ =
[
E{xxT}

]−1
E{xy}. (17)

Let’s compare this to least-squares solution we derived in the previous lecture:

θ̂LS = (XTX)−1XTy (18)
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where X is the data matrix:

X =


− (x(1))T −
− (x(2))T −

−
... −

− (x(n))T −

 .
To see the relationship between the two formulas, consider the jth column of XTX:

[XTX]j =

n∑
i=1

x(i)x
(i)
j (19)

where x
(i)
j is the jth variable in the ith example in the training set and x(i) = [x

(i)
0 , . . . ,x

(i)
p−1]

T. By
the law of large numbers this converges (when the number of training examples, n becomes large)
to nE{xxj}, which is n times the jth column of E{xxT}.

Similarly, note that

XTy =
n∑

i=1

x(i)y(i). (20)

By the law of large numbers this converges (when the number of training examples, n becomes
large) to nE{xy}. We conclude that

θ̂LS ≈
[
nE{xxT}

]−1
nE{xy} = θ̂. (21)

2.3 Summary

Both k-nearest neighbors and least squares end up approximating conditional expectation by av-
erage. But they differ dramatically in terms of model assumptions:

• Least Squares assumes that h(x) is well approximated by a global linear function.

• k-nearest neighbors assumes that h(x) is well approximated by a local constant function.

3 Bayes optimal classifier: maximum conditional probability

So far in this lecture we have considered a regression problem, let’s return to the classification
problem from the previous lecture:
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Figure 1: Bayes optimal classifier

We did not specify before how the data points in this example were generated. Now we reveal the
secret:

• Generate 10 means mk from N
(
[0, 1]T, I

)
and label this class BLUE. Generated 10 means

mk from N
(
[1, 0]T, I

)
and label this class ORANGE. These 20 points are fixed once and for

all and are assumed nonrandom and known.

• For each class (BLUE and ORANGE), generate 100 observations as follows: pick an mk at
random with probability of 1/10, then generate points according to N (mk, I/5).

This is a Bayesian problem because we have specified the data-generating distribution precisely.
Therefore, we can calculate the optimal solution by minimizing the expected prediction error:

EPE(h) = E (L(y, h(x))) (22)

where we use the misclassification loss function that is defined as follows:

L(y, h(x)) =

{
0, iff h(x) = y

1, iff h(x) 6= y.
(23)
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Similarly to the calculation we did for regression,

h(x) = arg min
c∈{0,1}

Ey|x (L(y, c)|x = x) (24)

= arg min
c∈{0,1}

P(y = 0|x = x) · L(0, c) + P(y = 1|x = x) · L(1, c) (25)

= arg min
c∈{0,1}

P(y 6= c|x = x) (26)

= arg min
c∈{0,1}

1− P(y = c|x = x) (27)

= arg max
c∈{0,1}

P(y = c|x = x). (28)

Therefore, the optimal algorithm is simply to choose the class that has the largest conditional
probability given the data. This is called the Bayes rule for classification. The Bayes-optimal
decision boundary is shown in Figure 1. It is instructive to compare this decision boundary to the
one produced by the 15-nearest neighbors classifier:

We observe that the decision boundaries produced by the two algorithms are very similar!
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