
MLISP: Machine Learning in Signal Processing

Lecture 12

Prof. V. I. Morgenshtern

Scribe: M. Elminshawi

Illustrations: Compressed sensing course by E. Candes

Agenda:

1. Discrete wavelet transform algorithm

2. Wavelet compression

3. Traditional information transmission pipeline

4. Magnetic resonance imaging (MRI)

5. Introduction to compressed sensing

6. Basics of convex optimization

1 Discrete wavelet transform algorithm

In the previous lecture we have seen that to compute the wavelet transform of a signal we need to
multiply that signal by the orthogonal matrix

WT =



φ(t1) φ(t2) . . . φ(tN )
ψ(t1) ψ(t2) . . . ψ(tN )√
2ψ(2t1)

√
2ψ(2t2) . . .

√
2ψ(2tN )√

2ψ(2t1 − 1)
√

2ψ(2t2 − 1) . . .
√

2ψ(2tN − 1)
2ψ(22t1) 2ψ(22t2) . . . 2ψ(22tN )

2ψ(22t1 − 1) 2ψ(22t2 − 1) . . . 2ψ(22tN − 1)
2ψ(22t1 − 2) 2ψ(22t2 − 2) . . . 2ψ(22tN − 2)

...

2J/2ψ(2J t1 − 2J + 1) 2J/2ψ(2J t2 − 2J + 1) . . . 2J/2ψ(2J tN − 2J + 1)


If the matrix is N ×N , the complexity of this multiplication is O(N2). It turns out that there is a
vastly more efficient algorithm to compute the wavelet transform of a signal that only takes O(N)
steps. This is faster then the O(N log(N)) of Fast Fourier Transform. We derive the fast algorithm
for wavelet transform next.
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Since 21/2φ(t/2) ∈ V−1 ⊂ V0 and the shifts of the pixel function {φ(t−k)}k∈Z form an orthonormal
basis for V0, we can decompose

1√
2
φ

(
t

2

)
=

∞∑
n=−∞

h[n]φ(t− n) (1)

where

h[n] =

〈
1√
2
φ

(
t

2

)
, φ(t− n)

〉
. (2)

The sequence h[n]n∈Z is called the conjugate mirror filter. Since the function φ(·) is usually chosen
to be well concentrated, h[n]n∈Z has very few nonzero elements.

Exercise: Compute h[n] when φ(·) is the pixel function of Haar wavelets. How many nonzero
elements does h[n] have?

Similarly, 21/2ψ(t/2) ∈W−1 ⊂ V0 and, therefore we can write

1√
2
ψ

(
t

2

)
=

∞∑
n=−∞

g[n]φ(t− n) (3)

where

g[n] =

〈
1√
2
ψ

(
t

2

)
, φ(t− n)

〉
. (4)

The sequence g[n]n∈Z is called the mirror filter. Again, since the function ψ(·) is usually chosen to
be well concentrated, g[n]n∈Z has very few nonzero elements.

Exercise: Compute g[n] for Haar wavelets. How many nonzero elements does g[n] have?

By performing the change of variable t← 2(2jt− k), we get the following refinement relationship:

1√
2
φ(2jt− k) =

∞∑
n=−∞

h[n]φ(2j+1t− (n+ 2k)) (5)

1√
2
ψ(2jt− k) =

∞∑
n=−∞

g[n]φ(2j+1t− (n+ 2k)). (6)

By a second change of variable n← n− 2k and a multiplication by 2j+1/2, we finally obtain

φj,k =

∞∑
n=−∞

h[n− 2k]φj+1,n (7)

ψj,k =

∞∑
n=−∞

g[n− 2k]φj+1,n (8)

where φj,k = 2j/2φ(2jt− k) and ψj,k = 2j/2ψ(2jt− k) for all t ∈ R. Therefore, for every signal f(·)
we have

〈f, φj,k〉 =
∞∑

n=−∞
h[n− 2k] 〈f, φj+1,n〉 (9)

〈f, ψj,k〉 =

∞∑
n=−∞

g[n− 2k] 〈f, φj+1,n〉 . (10)
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Now denote aj [k] = 〈f, φj+1,n〉 and wj [k] = 〈f, ψj+1,n〉 and rewrite the two equations above as

aj [k] =
∞∑

n=−∞
h[n− 2k]aj+1[n] (11)

wj [k] =

∞∑
n=−∞

g[n− 2k]aj+1[n]. (12)

If our signal consists of N = 2J samples as follows

f(t) =

2J−1∑
k=0

x[k]2J/2φ(2J t− k) ∈ VJ (13)

then aJ [k] = x[k] and wj [k] for j < J are the wavelet coefficients we are trying to compute.
The recursive formulas (11) and (12) allow us to compute these coefficient starting from aJ [n] by
incrementally decreasing j.

At each step in the recursion, we convolve the filters h[·] and g[·] with the sequence aj [·] and
subsample the result by a factor of 2. (Subsampling corresponds to the term −2k above.) Suppose
that the width of the filters h[·] and g[·] is no larger than C. Then, the computation of aJ−1
and wJ−1 requires C · 2J+1 multiplications, the computation of aJ−2 and wJ−2 requires C · 2J
multiplications, etc. At each level, the number of necessary multiplications is reduced by the factor
of 2 due to subsampling. Therefore,

the total number of multiplications = C

J+1∑
j=0

2j ≈ C2J+2 = 4CN. (14)

We conclude that the algorithm is linear in N .

Using similar ideas one can derive recursive formulas for the inverse wavelet transform and show
that the complexity of the inverse transform is also linear in N .

2 Wavelet compression

We have seen that in the case of wavelet transform orthogonal matrix W, the optimization problem

min
θ

‖y −Wθ‖22 + 2λ ‖θ‖1

with λ = σ
√

2 logN recovers a sparse solution θ due to soft-thresholding of small wavelet coeffi-
cients. We have seen also that natural images are nearly sparse in the wavelet domain. This means
that most of the wavelet coefficients of a photograph are small and only few are large. Consider a
1-megapixel image:
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To compress this image, do:

• compute 1,000,000 wavelet coefficients

• set to zero all but the 25000 largest coefficients

• invert the wavelet transform.

After doing this, we obtain the following result:

We can see that the quality of the image is almost the same as before, but the image has been
compressed 40 times. This is the principle that underlines modern lossy coders.

3 Traditional information transmission pipeline

If we want to transmit an image, the process would typically consist of the following steps:

• sample the image at high sampling rate, generate N samples
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• compress the image using a nonlinear signal dependent algorithm, generate M � N numbers
that describe the image

• transmit the M numbers

• receive the M numbers

• decompress the image generating N pixels that approximate the image well.

The process is illustrated in the following figure:

Do we really need to acquire N �M pieces of information simply to throw most of that information
away immediately afterwards? This is ok in photography, because the image acquisition costs is
small. However, this is highly suboptimal in many other applications.

4 Magnetic resonance imaging (MRI)

MRI is the prominent example in which acquiring many samples is very expensive.
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Here are the principles of MRI:

• Powerful magnetic field aligns nuclear magnetization of hydrogen atoms in water in the body.

• RF fields systematically alter the alignment of this magnetization, Hydrogen nuclei produce
a rotating magnetic field detectable by the scanner.

• Make excitation strength space dependent.

• Goal is to recover proton density.

The data the MRI scanner captures can be modeled by the 2D Fourier transform of the image that
we want to recover, f [t1, t2], 0 ≤ t1, t2 ≤ N − 1:

f̂(ω1, ω2) =
∑
t1,t2

f [t1, t2]e
−i2π(ω1t1+ω2t2).

Concretely, the MR scan records:

y(ω1, ω2) = f̂(ω1, ω2) + noise.

The set of frequencies {(ω1, ω2)} where the data is recorded can be controlled. Recording one
coefficient y(ω1, ω2) costs certain amount of time. The more coefficients we record, the longer
the scan takes. We wish to speed up MRI by sampling less. This is very important to widen
applicability.

For example, consider magnetic resonance angiography of a 500× 500 pixel image:

Instead of sampling 500 × 500 Fourier coefficients as Shannon-Nyquist theorem dictates, we will
sample along about 20 radial lines in Fourier space and take 500 samples along each line:
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Therefore, about 96% of Fourier coefficients are missing. Can we still recover the image from 4%
of the samples that are normally considered necessary?

5 Introduction to compressed sensing

Compressed sensing theory tells us that this is possible, because the images are highly compressible
in the wavelet domain.

Let θ be a N = (500)2-dimensional vector that contains the wavelet coefficients of our image:

image = Wθ.

We know that most of elements of θ are approximately zero. Assume for simplicity that they are
exactly zero, and there is only s� N nonzero elements.

Our measurements are M = 20 · 500 Fourier transform coefficients:

y = FH · image = FHWθ

where FH is the M × N matrix whose M rows contain a subset of the N 2D Fourier transform
vectors, corresponding to the M measurements.

We have 20 · 500 linear equations for 500 · 500 unknowns. Therefor, we have 25 times less equations
than unknowns. In general, there are infinitely many solutions to this system of equations: if θ0 is
one solution, i.e.

y = FHWθ0

and z is any vector from the null space of FHW, i.e.

FHWz = 0.

Then, θ0 + z is another solution:

FHW(θ0 + z) = FHWθ0 = y.

However, we are searching for a very special solution, the one that is sparse. The following problem
has a unique solution:
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Find the sparsest θ such that FHWθ = y. (NON-CVX)

How can we solve this? Recall that the `1-norm promotes sparsity. Hence, we could attempt to
instead solve:

min
θ

‖θ‖1

subject to FHWθ = y.
(CVX)

As we will see, if M > const · s logN (s is the number of nonzero wavelet coefficients in x), the
solution of (CVX) is exactly equal to the solution of (NON-CVX). This is the magic of compressed
sensing. We will prove a basic result of this form in 2 weeks. To do this we first need to study
basics of convex optimisation.
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