
LabMLISP: Lab Course Machine Learning in Signal Processing SS 2019

Part II: Road simulator

Prof. Veniamin Morgenshtern

Author: Sebastian Lotter, Ahmad Aloradi, and Veniamin Morgenshtern

Your next goal is to create a road simulator that will be used to create images for training the
network.

Study object oriented programming

The system you will build will use the object oriented programming framework. If you are not
familiar with object oriented programming in Python, begin by going through a short tutorial
notebook that is available at the shared folder /SHARED/DATA/mlisp-lab/OOP Tutorial/. Copy
the notebook by running the following command in your working directory.
$ cp ~/SHARED/DATA/mlisp-lab/ps2 oop tutorial/*.ipynb .

If needed, here is a link to a more comprehensive object oriented programming tutorial:

https://python.swaroopch.com/oop.html

Study debugging in Python / Jupyter

In this laboratory you will be asked to complete a lot of code. It’s best to make your work modular
and after implementing each function or class test that the function you have implemented works
as expected.

Even if your code does not work as a whole, you can still test individual functions. For this a
built-in Jupyter debugger is very useful. In the end of the OOP Tutorial.ipynb notebook you will
find a simple example on how to use the debugger.

Create road simulator

You are given a prototype of the simulator and you need to reconstruct the missing details. To
access the code, execute:
$ cd ~/labmlisp

$ cp -r ~/SHARED/DATA/mlisp-lab/ps2 simulator/* .

In the working directory your will now find the simulator test notebook.ipynb file. This is for
testing your simulator. After you are done, the output of the fourth cell in simulator test notebook.ipynb

notebook should look like this:

1

~
https://python.swaroopch.com/oop.html
~
~

In the working directory your will now find the simulator subfolder with colors ps.py,
filters ps.py, layers ps.py, and simulator ps.py files. Make copies of these files and call them
colors.py, filters.py, layers.py, and simulator.py, respectively. Follow the instructions
found in the files and fill in the missing code. Test your code as you develop it by making new cells
in simulator test notebook.ipynb and calling the corresponding functions.

In your work you can use the following sequence:

• Start by implementing one coloring function (color w constant color would be a good
choice) from colors.py.

• Reduce the config.py to a single layer: BackgroundLayer.

• Use color w constant color together with this single layer. This makes a complete working
simulator, creating deterministic background images.

• Test that this basic simulator works.

• Now you can extend your simulator by implementing functions in layers.py and colors.py

in any arbitrary order. Every time you have implemented some new layer or color, you can
test it by adopting the config and running the simulator.

• filters.py should be the last file you work on, this one is for adding randomness and can
be implemented in the end.

2

Structural Overview

background

sky

road

config.py

randomize
config

filters.py

BackgroundLayer

SkyLayer

StraightRoadLayer

layers.py

merge layers
render()

simulator.py

simulated
image

detections

The figure above shows a high-level overview of the simulator. Inside the simulator directory, you
will find the following python files: config.py, layers.py, colors.py, filters.py, simulator.py,
utils.py and init .py . These files together should generate the simulated road images and
their corresponding lane detections. These files contain incomplete pieces of code. The task is to
complete the missing parts of the code in the files such that the simulator generates the required
road images.

The file config.py contains an example configuration of the simulator. The file has only one
function that returns a dictionary specifying those configurations. Configuration of the various
layers and their composition is completely up to the user. The file config.py is complete and
need not to be filled. There are ’filters’ (see filters.py) that randomize the layers configuration
to provide a wide variety of images for training the neural network. The user is, however, free to
manually access the dictionary entries to change some certain configurations of the layers.

The simulated images consist of several overlayed layers. The module layers.py provides imple-
mentations of some basis layer types that together will form the simulated images. It consists of
one base class and five derived classes as shown in the below figure. Each of the derived classes
implements a different layer in the image. For every layer, there is an associated binary image
(fmask), with ones corresponding to the pixels of the layer itself. For example, the background
layer has a bitmask that is defined as an all ones array, since all of the background should cover
the whole image.

Layer Class Hierarchy

Layer()

+self.fmask

+self.render()

BackgroundLayer

SkyLayer

RoadLayer

LaneLayer

StraightRoadLayer

+self.road layer: RoadLayer
+self.lane layers: [LaneLayer]

+self.render()

The simulator (simulator.py) has two outputs: cartoon-like road images and lanes detections.

3

The simulator renders the image in the following way: obtaining the configuration of each layer,
applying the filters, and then merging the different layers. At the end of this pdf file, a suggested
roadmap is supplied to help you throughout the process of developing the simulator. It is advisable
to keep testing your results in the notebook file simulator test notebook.ipynb

Hints

1. If you get an indentation error in filters.py, its because the constructor(init) is not
initialized. This is part of your work. You can either choose to write pass in the those constructors
or write the code for those constructors right away.

2. To bind the function to a parameter, you need to use partial, please see how partial is used in
simulator.py. Here is a basic example of using this function

from functools import partial

def add(x,y):
print(’current value of x is:’, x)

print(’current value of y is:’, y)
return x+y

binded add = partial(add,x=1)
binded add(y=3)

More information can be found online.

4

Recommended Road Map

Hint: To test the functionality below it might be useful to use the Python / Jupyter debugger as
explained above.

1. type the statement pass after each empty constructor in the file filters.py, specifically in
lines 27, 41, 55, 70.

2. complete color w constant color in colors.py.

3. complete color w random color in colors.py.

4. complete BackgroundLayer in layers.py

5. reduce config.py to a single layer: BackgroundLayer by commenting lines 29-79.

——— test ———

6. complete color w constant color random mean in colors.py.

7. uncomment lines 29-43 in config.py and change the value of ’prob’, in line 32, from 0 to 1.

——— test ———

8. complete StraightRoadLayer and LaneLayer in layers.py.

9. uncomment lines 44-48 and line 79 in config.py.

——— test ———

10. complete TiltRoadFilter in filters.py.

11. uncomment lines 49-78 in config.py.

——— test ———

12. complete ShiftRoadFilter in filters.py.

——— test ———

13. complete ShiftLanesFilter in filters.py.

——— test ———

14. complete LaneWidthFilter in filters.py.

——— test ———

5

