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Abstract—We study fading interference relay networks where
M single-antenna source-destination terminal pairs communicate
through a set of K relays using half-duplex two-hop relaying. Two
specific protocols are considered, P1 introduced in [1], [2] and
P2 introduced in [3]. P1 relies on the idea of relay partitioning
and requires each relay terminal to know one backward and one
forward fading coefficient only. P2 requires each relay terminal
to know all M backward and M forward fading coefficients and
does not need relay partitioning. We prove that in the large-
M limit the minimum rate of growth of K for P1 to achieve a
strictly positive per source-destination terminal pair capacity is
K ∝ M3 whereas in P2 it is K ∝ M2. The protocols P1 and P2
are thus found to trade off the number of relay terminals for
channel state information (CSI) at the relays; more CSI at the
relays reduces the total number of relays needed to achieve a
strictly positive per source-destination terminal pair capacity in
the large-M limit.

I. INTRODUCTION

Sparked by [4], [5] there has been significant recent interest
in capacity scaling and space-time coding in wireless networks
with a plethora of results established under different assump-
tions on the setup [3], [6]–[15]. In this paper, we consider
interference fading relay networks where M single-antenna
source-destination terminal pairs communicate concurrently
through half-duplex two-hop relaying over a common set of
K single-antenna relay terminals (see Fig. 1). The network
operates in a completely distributed fashion, i.e., there is no
cooperation between terminals (not even the receive termi-
nals).

It was shown in [1], [2] that for fixed M, assuming a per-
fectly synchronized network1 and perfect channel state infor-
mation (CSI) at the destination terminals, network capacity
scales as C = (M/2) log(K) + O(1). The relaying scheme
proposed in [1], [2] (referred to as Protocol 1 or short P1 in
the following) requires that the relays are partitioned into M
clusters with each cluster assigned to one of the M source-
destination terminal pairs. The relays in a given cluster are
assumed to maintain perfect knowledge of the corresponding
scalar backward and forward channels to their assigned source
and destination terminals, respectively. In the large K limit,

1This assumption can be significantly relaxed without changing the capacity
scaling law [16].

assuming that the number of relays in each of the clusters
grows linearly with K, network capacity is achieved through
matched-filtering at the relays and independent (coherent) de-
coding at the destination terminals. This result implies that
distributed array gain [17] and spatial multiplexing gain [17]–
[19] can be obtained in a completely distributed fashion, i.e.,
without cooperation between any of the terminals (not even the
destination terminals). In [3] an alternative protocol (referred
to as Protocol 2 or short P2 in the following) for half-duplex
two-hop relaying based on matched-filtering at the relays is
proposed. P2 requires that each of the relays knows all its
M scalar backward and M scalar forward channels to the M
source and M destination terminals, respectively. There is no
need to perform relay partitioning (as in P1) and each relay
assists all M source-destination terminal pairs.

Contributions and relation to previous work: The main
contributions in this paper can be summarized as follows:
• The results in [1], [2] and the corresponding proof tech-

niques rely heavily on M being fixed when K → ∞.
Based on a slightly modified version of a technique intro-
duced in [20] in a completely different context and used
in [3] to establish the power efficiency scaling of P2, we
analyze P1 [1], [2] in the case where both M and K grow
large. We establish that for M → ∞ with K ∝ M3+α

the per source-destination terminal pair capacity achieved
by P1 scales at least as fast as log(Mα). A converse
result states that the per source-destination terminal pair
capacity of P1 approaches zero, for M →∞, if K grows
slower than M3.

• The focus in [3] is on establishing the power efficiency
scaling behavior of P2. Interpreting the findings in [3] in
terms of spectral efficiency, it is readily seen that P2, like
P1, realizes distributed array gain and spatial multiplexing
gain in a completely distributed fashion. In particular, the
results in [3] show that for M →∞ with K ∝ M2+α P2
achieves a per source-destination terminal pair capacity,
which scales at least as fast as log

(
Mα

)
. Using the same

technique as in the proof of the converse result for P1,
we then conclude that the per source-destination terminal
pair capacity of P2 approaches zero, for M → ∞, if K
grows slower than M2. In summary, we conclude that



P1 and P2 trade off channel knowledge at the relays for
the number of relays needed to achieve a given source-
destination terminal pair capacity.
Notation: |X | is the cardinality of the set X . All loga-

rithms are to the base 2. E denotes the expectation operator.
VAR(X) stands for the variance of the random variable (RV)
X . A circularly symmetric zero-mean complex Gaussian RV
is a RV Z = X + j Y ∼ CN (0, σ2), where X and Y are i.i.d.
N (0, σ2/2). δ[k] = 1 for k = 0 and 0 otherwise. For two func-
tions f(x) and g(x), the notation f(x) = O(g(x)) means that
|f(x)/g(x)| remains bounded as x → ∞. We write g(x) =
Θ(f(x)) to denote that f(x) = O(g(x)) and g(x) = O(f(x)).
Finally, f(x) = o(g(x)) stands for limx→∞ f(x)/g(x) = 0.

Organization of the paper: The remainder of this paper
is organized as follows. Section II introduces the channel and
signal model. In Section III, we establish the large-M scaling
behavior of P1. In Section IV, we state the converse result for
P2 and discuss the relation between P1 and P2.

II. CHANNEL AND SIGNAL MODEL

In this section, we present the channel and signal model and
additional basic assumptions. The discussion is general and
applies to both protocols under consideration. The specifics of
P1 and P2 are described in Sections III and IV, where our main
results are stated.

General assumptions: We consider an interference re-
lay network (see Fig. 1) consisting of K + 2M single-
antenna terminals with M designated source-destination ter-
minal pairs {Sl,Dl} (l = 1, 2, . . . ,M ) and K relays Rk

(k = 1, 2, . . . ,K). Source terminal Sl intends to communicate
solely with destination terminal Dl, a dead-zone of non-zero
radius around each Sl and Dl is free of relay terminals, and
no cooperation between terminals (not even between the desti-
nation terminals) is allowed. Furthermore, we assume that no
direct link between the individual source-destination terminal
pairs exists (e.g., caused by large separation), transmission
takes place in half-duplex (the terminals cannot transmit and
receive simultaneously) fashion in two hops (a.k.a. two-hop
relaying) over two separate time slots. In the first time slot the
source terminals Sl broadcast their information to all the relay
terminals (i.e., each relay terminal receives a superposition of
all source signals). After processing the received signals, the
relay terminals simultaneously broadcast the processed data to
all the destination terminals during the second time slot. Fi-
nally, we assume that all terminals are located within a domain
of fixed area (dense network assumption).

Channel and signal model: Throughout the paper,
frequency-flat fading over the bandwidth of interest and per-
fectly synchronized transmission/reception between the termi-
nals is assumed. The input-output relation for the Sl → Rk

link during the first time slot is given by

rk =
M∑
l=1

√
Ek,lhk,lsl + nk, k = 1, 2, . . . ,K (1)

where rk denotes the received signal at the kth relay termi-
nal, Ek,l is the average energy received at Rk through the

Sl → Rk link2 (having accounted for path loss and shad-
owing in the Sl → Rk link), hk,l denotes the corresponding
CN (0, 1) complex-valued channel gain, sl is the temporally
i.i.d. CN (0, 1) data signal transmitted by Sl and satisfying
E{sls

∗
k} = δ[l − k], and nk is CN (0, σ2) temporally and

spatially (across relay terminals) white noise.
Each relay terminal processes its received signal rk to pro-

duce the output signal tk, which is then broadcast to the desti-
nation terminals during the second time slot while the source
terminals are silent. The lth destination terminal receives the
signal

yl =
K∑

k=1

√
Pl,kfl,ktk + zl, l = 1, 2, . . . ,M (2)

where Pl,k denotes the average energy received at Dl through
the Rk → Dl link (having accounted for path loss and
shadowing in the Rk → Dl link), fl,k is the corresponding
CN (0, 1) complex-valued channel gain, and zl is CN (0, σ2)
temporally and spatially (across destination terminals) white
noise. The transmit signal tk must be chosen to satisfy the
average power constraint E{|tk|2} ≤ 1. Note that we impose a
power constraint on a per-relay basis rather than a sum power
constraint across relay terminals.

As already mentioned above, throughout the paper, path-
loss and shadowing is accounted for through the Ek,l (k =
1, 2, . . . ,K; l = 1, 2, . . . ,M ) (for the first hop) and the Pl,k

(l = 1, 2, . . . ,M ; k = 1, 2, . . . ,K) (for the second hop).
We assume that these parameters are deterministic, uniformly
bounded from above (follows from the dead-zone assumption)
and below (follows from considering a domain of fixed area)
so that

E ≤ Ek,l ≤ E, P ≤ Pl,k ≤ P , ∀k, l. (3)

Additionally, we assume a block fading channel model such
that the hk,l and fl,k change in an independent fashion from
channel use to channel use and coding is performed over an
infinite number of independent channel uses.

Throughout the paper, we assume that the source termi-
nals Sl do not have CSI. The assumptions on CSI at the relays
and the destination terminals will be made specific when dis-
cussing P1 and P2 below in Sections III and IV, respectively.

III. CAPACITY SCALING FOR PROTOCOL 1

In this section, we first briefly review Protocol 1 introduced
in [1], [2]. The capacity scaling law for P1 is stated in Theo-
rem 1.

A. Protocol 1

The basic setup was introduced in the previous section.
We shall next describe the specifics of P1. The K terminals
are partitioned into M subsets Ml (l = 1, 2, . . . ,M ) with3

|Ml| = K/M . The relays in Ml are assumed to assist the lth
source-destination terminal pair {Sl,Dl}. For simplicity, we

2A → B signifies communication from terminal A to terminal B.
3This assumption can be relaxed to requiring that the number of relay

terminals in each of these sets grows linearly with M in the large-M limit.



introduce the relay partitioning function p : [1,K] → [1,M ]
defined as

p(k) = l ⇔ Rk ∈Ml.

We assume that the kth relay terminal has perfect knowl-
edge of the phases arg(hk,p(k)) and arg(fp(k),k) of the single-
input single-output (SISO) backward channel Sp(k) → Rk and
the corresponding forward channel Rk → Dp(k), respectively.
Based on this CSI the signal rk received at the kth relay termi-
nal is co-phased with respect to (w.r.t.) the assigned backward
channel followed by an energy normalization so that

uk = τ
(1)
k e−j arg(hk,p(k)) rk (4)

where τ
(1)
k =

(∑M
l=1 Ek,l + σ2

)−1/2
ensures E{|uk|2} = 1.

The relay terminal Rk then computes the transmit signal tk by
co-phasing with respect to its assigned forward channel, i.e.,

tk = e−j arg(fp(k),k) uk (5)

so that the power constraint E{|tk|2} = 1 is satisfied. In sum-
mary, P1 ensures that |Ml| of the relay terminals forward the
signal intended for Dl in a “doubly coherent” (w.r.t. backward
and forward channel) fashion whereas the signals transmitted
by the source terminals Sm with m 6= l are forwarded to Dl

in a “noncoherent” fashion (i.e., we have phase incoherence
either on the backward or the forward link or on both links).
A more detailed description of P1 can be found in [1].

B. Bounds on Network Capacity

We are now ready to state our main result on the capacity
scaling law pertaining to P1.

Theorem 1: Suppose that destination terminal Dl (l =
1, 2, . . . ,M ) has perfect knowledge of the effective channel
gain (π/4)

∑
k∈Ml

τ
(1)
k (Ek,lPl,k)1/2 of the Sl → Dl link.

Then, for any ε > 0 there exist M0,K0, such that for all
M ≥ M0, K ≥ K0, the per source-destination terminal pair
capacity4 achieved by P1 is lower-bounded according to

CP1 ≥
1
2

log
(

1 +
π2

16
P E2

P E
2

K

M3

)
− ε. (6)

Furthermore, if K = o(M3), then

CP1 → 0 for M →∞. (7)

Proof: Here, we derive the lower bound (6) only. The
proof of the converse statement (7) requires a completely dif-
ferent approach and is reported in detail in [21].

Consider the SISO channel between the terminals Sl and Dl

(l = 1, 2, . . . ,M ). The destination terminal Dl receives doubly
(backward and forward link) coherently combined contribu-
tions corresponding to the data signal sl, interfering terms
containing contributions from the signals sm with m 6= l as
well as noise, forwarded by the relays. Combining (1), (4), (5)

4 The lower bound in (6) is obtained by invoking the uniform bounds (3)
and is hence uniform over all {Sl,Dl} pairs. The exact (asymptotic) capacity
expressions for the {Sl,Dl} pairs differ (across l) in the constant factor
multiplying the K

M3 term.

and (2), it follows (after some straightforward algebra) that the
signal received at Dl is given by (l = 1, 2, . . . ,M )

yl = sl

K∑
k=1

d l,l
k +

∑
m6=l

sm

K∑
k=1

d l,m
k +

K∑
k=1

b l
knk + zl,

where

d l,m
k = τ

(1)
k

√
Ek,mPl,k hk,m e−j arg(hk,p(k))fl,k e−j arg(fp(k),k)

b l
k = τ

(1)
k

√
Pl,k fl,k e−j arg(fp(k),k)e−j arg(hk,p(k)).

Next, we set

Fl =
K∑

k=1

E{d l,l
k }︸ ︷︷ ︸

F̄l

+
K∑

k=1

(
d l,l

k − E{d l,l
k }
)

︸ ︷︷ ︸
F̃l

Wl =
∑
m6=l

sm

K∑
k=1

d l,m
k +

K∑
k=1

b l
knk + zl, l = 1, 2, . . . ,M

so that yl =
(
F̄l + F̃l

)
sl +Wl. A lower bound on the capacity

of this SISO channel can be obtained following (a slightly
modified version of) the approach described in [20, Sec. III]. In
contrast to [20], in our case the noise term Wl is not Gaussian
and Wl and F̃l are not statistically independent. However, it is
not difficult to see that despite the relaxed assumptions on the
signal model, the result in [20] is still valid5 so that

I(yl; sl) ≥ log
(

1 +
F̄ 2

l

VAR(Fl) + VAR(Wl)

)
. (8)

What remains to be done is the computation of F̄l, VAR(Fl)
and VAR(Wl). The derivation of these quantities is tedious but
straightforward and can be found in [21]. We summarize the
result as [21] (l = 1, 2, . . . ,M )

F̄ 2
l ≥

π2

16
K2

M2

P E

ME + σ2

VAR(Fl) ≤ (M − 1)
K

M

P E

ME + σ2

VAR(Wl) ≤ MR(M − 1 + σ2)
P E

ME + σ2
+ σ2.

Substituting these bounds into (8) further (straightforward)
manipulations6 yield the desired result.

Theorem 1 shows that in the large-M limit, for K ∝
M3+α, the per source-destination terminal pair capacity scales
at least as fast as log

(
Mα

)
. Since we have a total of M

source-destination terminal pairs, the network capacity scales
at least as fast as (M/2) log

(
Mα

)
, which shows that P1

achieves full spatial multiplexing gain in a completely dis-
tributed fashion (recall that the Dl perform independent de-
coding). The corresponding distributed array gain is given

5A detailed derivation of the result in [20, Sec. III. A] under the re-
laxed assumptions described here can be found in [21]. Similarly to [20]
here we use the fact that the average gain of the effective channel F̄l =

(π/4)
P

k∈Ml
τ
(1)
k

`
Ek,lPl,k

´1/2 is known at the receiver Dl.
6Here, we used the fact that σ2 does not scale with M and is hence small

compared to M in the large-M limit.



by Mα. Moreover, it is worthwhile to point out that in con-
trast to the finite M results in [1], [2], the destination termi-
nals Dl do not need any knowledge of the small-scale fading
coefficients hk,l and fl,k. This can be seen by noting that
F̄l depends on the Ek,l and Pl,k only. Moreover, the coeffi-
cient (π/4)

∑
k∈Ml

τ
(1)
k (Ek,lPl,k)1/2 can easily be acquired

through training. Finally, we note that (6) provides a rough
idea of how E,E, P and P impact the network capacity.

The converse part (7) of Theorem 1 shows that the rate of
growth K ∝ M3 is fundamental in the sense that K ∝ Mβ

with β < 3 implies that CP1 → 0 for M →∞. Equivalently,
K ∝ M3 is the minimum rate of growth needed to sustain a
strictly positive per source-destination terminal pair capacity
in the large-M limit.

IV. RELATION BETWEEN P1 AND P2
In this section, we briefly review the protocol introduced

in [3] (referred to as P2 in this paper) and we discuss the
relation between P1 and P2 in detail. Whereas [3] is primar-
ily focused on the power efficiency scaling behavior of the
network, we shall interpret the lower bound in [3, Sec. 5.2]
in terms of spectral efficiency per source-destination terminal
pair capacity.

A. Protocol 2
The only difference between P1 and P2 is in the process-

ing at the relays. In P1 the K relays are partitioned into M
groups (of equal size) with each of these groups assisting one
particular source-destination terminal pair. In P2 each relay
assists all the source-destination terminal pairs so that relay
partitioning is not needed. The downside of P2 is that each of
the relays needs to know the phases of all its M backward and
M forward channels, i.e., Rk needs knowledge of the phases
of Sl → Rk and Rk → Dl, respectively, for l = 1, 2, . . . ,M .
Consequently, P2 requires significantly more CSI at the relays
than P1. The relay processing stage in P2 computes

tk = τ
(2)
k

(
M∑
l=1

e−j arg(hk,l)e−j arg(fl,k)

)
rk

where τ
(2)
k =

(
M
∑M

l=1 Ek,l + Mσ2
)−1/2

ensures that the
power constraint E{|tk|2} = 1 is satisfied.

B. Bounds on Network Capacity
In this section, we restate the lower bound in [3, Sec. 5.2]

in our setup and provide a corresponding converse result. We
hasten to add that we provide the lower bound for complete-
ness only and reformulate it in our framework for the sake of
having a basis for comparison of P1 and P2.

Theorem 2: Suppose that destination terminal Dl (l =
1, 2, . . . ,M ) has perfect knowledge of the effective channel
gain (π/4)

∑
k∈Ml

τ
(2)
k (Ek,lPl,k)1/2 of the Sl → Dl link.

Then, for any ε > 0 there exist M0,K0, such that for all
M ≥ M0, K ≥ K0, the per source-destination terminal pair
capacity7 achieved by P2 is lower-bounded according to

CP2 ≥
1
2

log
(

1 +
π2

16
P E2

P E
2

K

M2

)
− ε. (9)

7The same comment as in footnote 4 applies.

Furthermore, if K = o(M2), then

CP2 → 0 for M →∞.

Proof: The proof of both parts of this theorem follows
exactly the same idea as the proof of Theorem 1 and is pro-
vided in detail in [21].

Theorem 2 shows that for M → ∞ with K ∝ M2+α the
per source-destination terminal pair capacity scales at least as
fast as log

(
Mα

)
. Again, since there is a total of M source-

destination terminal pairs, the network capacity scales at least
as fast as (M/2) log(Mα), which proves that P2 achieves full
spatial multiplexing gain in a completely distributed fashion
(recall that the Dl perform independent decoding). The corre-
sponding array gain is given by Mα. We note that K ≥ M2

was a standing assumption in [3]. The second part of Theo-
rem 2 above shows that K ∝ M2 is indeed fundamental in the
sense that it is the minimum rate of growth required to realize
strictly positive per source-destination terminal pair capacity
in the large-M limit. Finally, we note that, just like in P1, no
knowledge of the small-scale fading coefficients hk,l and fl,k

is needed at the destination terminals.

C. Relation Between P1 and P2
Summarizing the results in Theorems 1 and 2, we can con-

clude that both protocols P1 and P2 perform distributed or-
thogonalization of the effective MIMO channel between the Sl

and the Dl. However, the minimum rate of growth required to
realize a strictly positive per source-destination terminal pair
capacity in the large-M limit is K ∝ M3 in P1 whereas it
is (only) K ∝ M2 in P2. This order of magnitude reduction
comes, however, at the cost of each relay having to know all M
backward and M forward channels. We can therefore conclude
that P1 and P2 trade off the number of relay terminals for
channel knowledge at the relays.

D. Numerical Results
For K = M3 in P1 and K = M2 in P2, Fig. 2 shows the

lower bounds on per source-destination terminal pair capacity
(6) and (9), respectively, along with the upper bound obtained
(through Monte Carlo methods) by assuming that each of the
destination terminals Dl knows the small-scale fading coeffi-
cients. We can see that for increasing M the bounds become
increasingly tight. Fig. 3 shows the same bounds for K =
M2.5 and K = M3.5 in P1 and correspondingly K = M1.5

and K = M2.5 in P2. We observe that the bounds are again
increasingly tight for increasing M . Moreover, we can see that
for K = M3.5 in P1 and K = M2.5 in P2, the per source-
destination terminal pair capacity increases with increasing M ,
which can be attributed to distributed array gain. For K =
M2.5 in P1 and K = M1.5 in P2, the per source-destination
terminal pair capacity approaches zero in the large-M limit
which agrees with the converse parts of Theorems 1 and 2.

V. CONCLUSION

We established the fundamental rates of growth of the num-
ber of relays K as a function of the number of source-
destination terminal pairs M for the two-hop half-duplex re-
laying protocols introduced in [1], [2] and [3]. The protocol
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laying protocols introduced in [1], [2] and [3]. The protocol
in [1], [2] requires relay partitioning and the knowledge of
one backward and one forward fading coefficient per relay; the
corresponding minimum rate of growth is K ∝ M3 for the per
source-destination terminal pair capacity to be strictly positive
in the large-M limit. The protocol in [3] requires the knowl-
edge of all M backward and M forward fading coefficients at
each of the relay terminals; the corresponding minimum rate
of growth was shown to be K ∝ M2.
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Fig. 1. Interference relay network.
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Fig. 2. Upper and lower bounds on CP1 and CP2 for K = M3 in P1 and
K = M2 in P2.

in [1], [2] requires relay partitioning and the knowledge of
one backward and one forward fading coefficient per relay; the
corresponding minimum rate of growth is K ∝ M3 for the per
source-destination terminal pair capacity to be strictly positive
in the large-M limit. The protocol in [3] requires the knowl-
edge of all M backward and M forward fading coefficients at
each of the relay terminals; the corresponding minimum rate
of growth was shown to be K ∝ M2.
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