Capacity Pre-log of Noncoherent SIMO Channels via Hironaka's Theorem

Veniamin I. Morgenshtern

Joint work with E. Riegler, W. Yang, G. Durisi, S. Lin, B. Sturmfels, and H. Bőlcskei

 $y_t = \sqrt{\operatorname{SNR}} h_t x_t + w_t$

■ h_t .. channel gain (random, changes in time) ■ $w_t \sim C\mathcal{N}(0, 1)$, i.i.d. across t

 $y_t = \sqrt{\mathrm{SNR}} h_t x_t + w_t$

■
$$h_t$$
 .. channel gain (random, changes in time)
■ $w_t \sim C\mathcal{N}(0, 1)$, i.i.d. across t

Coherent setting: h_t is known at RX

 $y_t = \sqrt{\operatorname{SNR}} h_t x_t + w_t$

■
$$h_t$$
 .. channel gain (random, changes in time)
■ $w_t \sim C\mathcal{N}(0, 1)$, i.i.d. across t

Coherent setting: h_t is known at RX

Noncoherent setting: h_t is not known at RX

SISO Correlated Block-Fading Channel

$$y_t = \sqrt{\operatorname{SNR}} h_t x_t + w_t \quad t = (1, \dots, T)$$

SISO Correlated Block-Fading Channel

$$y_t = \sqrt{\operatorname{SNR}} h_t x_t + w_t \quad t = (1, \dots, T)$$

$$[h_1 \cdots h_T]^{\mathsf{T}} \sim \mathcal{CN}(\mathbf{0}, \mathbf{PP}^{\mathsf{H}})$$
$$\mathbf{P} \in \mathbb{C}^{T \times Q}; \quad \operatorname{rank} \mathbf{P} = Q < T$$

SISO Correlated Block-Fading Channel

$$y_t = \sqrt{\operatorname{SNR}} h_t x_t + w_t \quad t = (1, \dots, T)$$

$$[h_1 \cdots h_T]^{\mathsf{T}} \sim \mathcal{CN}(\mathbf{0}, \mathbf{PP}^{\mathsf{H}})$$
$$\mathbf{P} \in \mathbb{C}^{T \times Q}; \quad \operatorname{rank} \mathbf{P} = Q < T$$

Channel gains in whitened form:

$$\begin{bmatrix} h_1 \\ h_2 \\ \vdots \\ h_T \end{bmatrix} = \mathbf{P} \begin{bmatrix} s_1 \\ \vdots \\ s_Q \end{bmatrix}, \qquad s_q \sim \mathcal{CN}(0, 1), \text{ iid across } q$$

Capacity

Fundamental problem:

What is the ultimate limit on the rate of reliable communication over the channel — capacity?

Capacity

Fundamental problem:

What is the ultimate limit on the rate of reliable communication over the channel — capacity?

Shannon coding theorem:

$$C(\text{SNR}) \triangleq (1/T) \sup_{f_{\mathbf{x}}(\cdot)} I(\{x_t\}; \{y_t\}); \qquad \mathbb{E}\left[\sum_{t=1}^T |x_t|^2\right] \le T$$

Capacity

Fundamental problem:

What is the ultimate limit on the rate of reliable communication over the channel — capacity?

Shannon coding theorem:

$$C(\operatorname{SNR}) \triangleq (1/T) \sup_{f_{\mathbf{x}}(\cdot)} I(\{x_t\}; \{y_t\}); \qquad \mathbb{E}\left[\sum_{t=1}^T |x_t|^2\right] \le T$$

Mutual information: $I({x_t}; {y_t}) = h({x_t}) - h({x_t} | {y_t})$ Differential Entropy: $h({y_t})$

Capacity Pre-log

AWGN Channel ($h_t = 1 \forall t$) [Shannon, 48]:

 $C_{\text{AWGN}} = \log(1 + \text{SNR})$

Capacity Pre-log

AWGN Channel ($h_t = 1 \forall t$) [Shannon, 48]:

$$C_{\text{AWGN}} = \log(1 + \text{SNR})$$

• Coherent setting with T = 1 [Telatar, 99]:

$$C_{\mathsf{coh}} = \mathbb{E}_h \log(1 + \mathrm{SNR} |h|^2) \approx \log(\mathrm{SNR}), \ \mathrm{SNR} \to \infty$$

Capacity Pre-log

AWGN Channel ($h_t = 1 \forall t$) [Shannon, 48]:

$$C_{\text{AWGN}} = \log(1 + \text{SNR})$$

• Coherent setting with T = 1 [Telatar, 99]:

$$C_{\mathsf{coh}} = \mathbb{E}_h \log(1 + \operatorname{SNR} |h|^2) \approx \log(\operatorname{SNR}), \ \operatorname{SNR} \to \infty$$

Pre-Log

$$\chi = \lim_{\text{SNR} \to \infty} \frac{C(\text{SNR})}{\log(\text{SNR})}$$

■ Noncoherent setting, T = 1 [Lapidoth & Mozer, 03]:

 $C_{\mathsf{ncoh}} \approx \log \log(\text{snr})$

■ Noncoherent setting, T = 1 [Lapidoth & Mozer, 03]:

 $C_{\mathsf{ncoh}} \approx \log \log(\text{snr})$

■ Noncoherent setting, rank **P** = 1 [Marzetta & Hochwald, 99]:

 $C_{\rm ncoh} \approx (1 - 1/T) \log({\rm SNR})$

■ Noncoherent setting, T = 1 [Lapidoth & Mozer, 03]:

 $C_{\sf ncoh} \approx \log \log(\text{snr})$

Noncoherent setting, $\operatorname{rank} \mathbf{P} = 1$ [Marzetta & Hochwald, 99]:

$$C_{\rm ncoh} \approx (1 - 1/T) \log({\rm SNR})$$

Noncoherent setting, $\operatorname{rank} \mathbf{P} = Q$ [Liang & Veeravalli, 04]:

 $C_{\rm ncoh} \approx (1 - Q/T) \log({\rm SNR})$

Noncoherent setting, T = 1 [Lapidoth & Mozer, 03]:

 $C_{\mathsf{ncoh}} \approx \log \log(\text{snr})$

■ Noncoherent setting, rank **P** = 1 [Marzetta & Hochwald, 99]:

$$C_{\rm ncoh} \approx (1 - 1/T) \log({\rm SNR})$$

■ Noncoherent setting, $rank \mathbf{P} = Q$ [Liang & Veeravalli, 04]:

$$C_{\rm ncoh}\approx (1-Q/T)\log({\rm SNR})$$

Noncoherent setting, T = 1 [Lapidoth & Mozer, 03]:

 $C_{\mathsf{ncoh}} \approx \log \log(\text{snr})$

■ Noncoherent setting, rank **P** = 1 [Marzetta & Hochwald, 99]:

$$C_{\rm ncoh} \approx (1 - 1/T) \log({\rm SNR})$$

Noncoherent setting, rank $\mathbf{P} = Q$ [Liang & Veeravalli, 04]:

$$C_{\rm ncoh}\approx (1-Q/T)\log({\rm SNR})$$

Number of unknown channel parameters per block is $Q = \operatorname{rank} \mathbf{P}$: $[h_1 \ h_2 \ \dots h_T]^{\mathsf{T}} = \mathbf{P}[s_1 \ s_2 \ \dots s_Q]^{\mathsf{T}}$

Eliminating the Noncoherent Penalty by Adding Receive Antennas (Only!)

■ Total number of **unknown channel parameters** is MQ

\blacksquare Total number of **unknown channel parameters** is MQ

■ Is the **pre-log** then given by (1 - MQ/T)?

$$y_{mt} = \sqrt{\text{SNR}} h_{mt} x_t + w_{mt} \quad (m = 1, \dots, M, \ t = 1, \dots, T)$$

- Total number of unknown channel parameters is MQ
- Is the **pre-log** then given by (1 MQ/T)?
- **No!** We can use only one receive antenna to get a pre-log of (1 Q/T)

$$y_{mt} = \sqrt{\text{SNR}} h_{mt} x_t + w_{mt} \quad (m = 1, \dots, M, \ t = 1, \dots, T)$$

- Total number of unknown channel parameters is MQ
- Is the **pre-log** then given by (1 MQ/T)?
- **No!** We can use only one receive antenna to get a pre-log of (1 Q/T)

We can actually do better!

Main Result [VM et. al., 2012]

Under technical conditions on \mathbf{P} ,

$$\chi_{\text{SIMO}} = \min[1 - 1/T, R(1 - Q/T)]$$

Main Result [VM et. al., 2012]

Under technical conditions on \mathbf{P} ,

$$\chi_{\text{SIMO}} = \min[1 - 1/T, R(1 - Q/T)]$$

Main Result [VM et. al., 2012]

Under technical conditions on \mathbf{P} ,

$$\chi_{\text{SIMO}} = \min[1 - 1/T, R(1 - Q/T)]$$

Multiple antennas at the receiver can recover degrees of freedom

Implications

 $M = 2, T \ge 2Q - 1$ $\chi_{\text{SIMO}} = 1 - 1/T \stackrel{!}{>} 1 - \underbrace{Q/T}_{\chi_{\text{SISO}}}$

Implications

 $M=2, T\geq 2Q-1$ $\chi_{\rm SIMO}=1-1/T \stackrel{!}{>} 1-\underbrace{Q/T}_{\chi_{\rm SISO}}$

 $M = 2, T \rightarrow \infty, Q \approx T/2$ (i.e., Q/T = 1/2) $\chi_{SISO} = 1 - Q/T \approx 1/2$ $\chi_{SIMO} = 1 - 1/T \approx 1$

Implications

 $M = 2, T \ge 2Q - 1$ $\chi_{\text{SIMO}} = 1 - 1/T \stackrel{!}{>} 1 - \underbrace{Q/T}_{\chi_{\text{SISO}}}$

$$M = 2, T \rightarrow \infty, Q \approx T/2$$
 (i.e., $Q/T = 1/2$)
 $\chi_{SISO} = 1 - Q/T \approx 1/2$
 $\chi_{SIMO} = 1 - 1/T \approx 1$

The "channel identification penalty" vanishes if a second receive antenna is used

Linear Algebra: Guessing Pre-Log Noiseless I/O relation:

$$\hat{y}_{mt} = h_{mt} x_t$$

Noiseless I/O relation:

$$\hat{y}_{mt} = h_{mt} x_t$$

Rule of thumb: $\chi = \frac{\text{number of RVs } x_t \text{ that can be identified uniquely from } \{\hat{y}_{mt}\}}{T}$

Coherent SISO Channel T = 3

$$\hat{y}_1 = h_1 x_1$$
$$\hat{y}_2 = h_2 x_2$$
$$\hat{y}_3 = h_3 x_3$$

Coherent SISO Channel T = 3

$$\hat{y}_1 = h_1 x_1$$

 $\hat{y}_2 = h_2 x_2$
 $\hat{y}_3 = h_3 x_3$

■ 3 linear equations in 3 unknowns
Coherent SISO Channel T = 3

$$\hat{y}_1 = h_1 x_1$$

 $\hat{y}_2 = h_2 x_2$
 $\hat{y}_3 = h_3 x_3$

3 linear equations in 3 unknowns \Rightarrow unique solution

Coherent SISO Channel T = 3

$$\hat{y}_1 = h_1 x_1$$

 $\hat{y}_2 = h_2 x_2$
 $\hat{y}_3 = h_3 x_3$

■ 3 linear equations in 3 unknowns \Rightarrow unique solution ■ $\Rightarrow \chi_{SISO} = 3/3 = 1$ [Telatar, 99]

$$\begin{bmatrix} h_1 \\ h_2 \\ h_3 \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}}_{\mathbf{P}} \begin{bmatrix} s_1 \\ s_2 \end{bmatrix}$$

$$\hat{y}_1 = s_1 x_1$$

 $\hat{y}_2 = s_2 x_2$
 $\hat{y}_3 = (s_1 + s_2) x_3$

$$\begin{bmatrix} h_1 \\ h_2 \\ h_3 \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}}_{\mathbf{P}} \begin{bmatrix} s_1 \\ s_2 \end{bmatrix}$$

$$\hat{y}_1 = s_1 x_1$$

 $\hat{y}_2 = s_2 x_2$
 $\hat{y}_3 = (s_1 + s_2) x_3$

Quadratic equations!

$$\begin{bmatrix} h_1 \\ h_2 \\ h_3 \end{bmatrix} = \underbrace{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} }_{\mathbf{P}} \begin{bmatrix} s_1 \\ s_2 \end{bmatrix} \qquad \begin{array}{c} \hat{y}_1 = s_1 x_1 \\ \hat{y}_2 = s_2 x_2 \\ \hat{y}_3 = (s_1 + s_2) x_3 \end{array}$$

Quadratic equations! Define $z_i = 1/x_i$

- **Quadratic equations!** Define $z_i = 1/x_i$
- 3 linear equations in 5 unknowns: z_1, z_2, z_3, s_1, s_2

$$\begin{bmatrix} h_1 \\ h_2 \\ h_3 \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}}_{\mathbf{P}} \begin{bmatrix} s_1 \\ s_2 \end{bmatrix} \qquad \begin{array}{c} \hat{y}_1 = s_1 x_1 & z_1 \hat{y}_1 = s_1 \\ \hat{y}_2 = s_2 x_2 & z_2 \hat{y}_2 = s_2 \\ \hat{y}_3 = (s_1 + s_2) x_3 & z_3 \hat{y}_3 = (s_1 + s_2) \end{array}$$

- **Quadratic equations!** Define $z_i = 1/x_i$
- 3 linear equations in 5 unknowns: z_1, z_2, z_3, s_1, s_2 ⇒ infinitely many solutions

$$\begin{bmatrix} h_1 \\ h_2 \\ h_3 \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}}_{\mathbf{P}} \begin{bmatrix} s_1 \\ s_2 \end{bmatrix} \qquad \begin{array}{c} \hat{y}_1 = s_1 x_1 & z_1 \hat{y}_1 = s_1 \\ \hat{y}_2 = s_2 x_2 & z_2 \hat{y}_2 = s_2 \\ \hat{y}_3 = (s_1 + s_2) x_3 & z_3 \hat{y}_3 = (s_1 + s_2) \end{array}$$

- \blacksquare Quadratic equations! Define $z_i=1/x_i$
- 3 linear equations in 5 unknowns: z_1, z_2, z_3, s_1, s_2 ⇒ infinitely many solutions
- Transmit 2 pilot-symbols to eliminate ambiguity

$$\begin{bmatrix} h_1 \\ h_2 \\ h_3 \end{bmatrix} = \underbrace{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} }_{\mathbf{P}} \begin{bmatrix} s_1 \\ s_2 \end{bmatrix} \qquad \begin{array}{c} \hat{y}_1 = s_1 x_1 & 1 \hat{y}_1 = s_1 \\ \hat{y}_2 = s_2 x_2 & 1 \hat{y}_2 = s_2 \\ \hat{y}_3 = (s_1 + s_2) x_3 & z_3 \hat{y}_3 = (s_1 + s_2) \end{array}$$

- \blacksquare Quadratic equations! Define $z_i=1/x_i$
- 3 linear equations in 5 unknowns: z_1, z_2, z_3, s_1, s_2 ⇒ infinitely many solutions
- Transmit 2 pilot-symbols to eliminate ambiguity
- **3** linear equations in 3 unknowns: z_3, s_1, s_2

$$\begin{bmatrix} h_1 \\ h_2 \\ h_3 \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}}_{\mathbf{P}} \begin{bmatrix} s_1 \\ s_2 \end{bmatrix} \qquad \begin{array}{c} \hat{y}_1 = s_1 x_1 & 1 \hat{y}_1 = s_1 \\ \hat{y}_2 = s_2 x_2 & 1 \hat{y}_2 = s_2 \\ \hat{y}_3 = (s_1 + s_2) x_3 & z_3 \hat{y}_3 = (s_1 + s_2) \end{array}$$

- \blacksquare Quadratic equations! Define $z_i=1/x_i$
- 3 linear equations in 5 unknowns: z_1, z_2, z_3, s_1, s_2 ⇒ infinitely many solutions
- Transmit 2 pilot-symbols to eliminate ambiguity
- 3 linear equations in 3 unknowns: $z_3, s_1, s_2 \Rightarrow$ unique solution

$$\begin{bmatrix} h_1 \\ h_2 \\ h_3 \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}}_{\mathbf{P}} \begin{bmatrix} s_1 \\ s_2 \end{bmatrix} \qquad \begin{array}{c} \hat{y}_1 = s_1 x_1 & 1 \hat{y}_1 = s_1 \\ \hat{y}_2 = s_2 x_2 & 1 \hat{y}_2 = s_2 \\ \hat{y}_3 = (s_1 + s_2) x_3 & z_3 \hat{y}_3 = (s_1 + s_2) \end{array}$$

- \blacksquare Quadratic equations! Define $z_i=1/x_i$
- 3 linear equations in 5 unknowns: z_1, z_2, z_3, s_1, s_2 ⇒ infinitely many solutions
- Transmit 2 pilot-symbols to eliminate ambiguity
- 3 linear equations in 3 unknowns: $z_3, s_1, s_2 \Rightarrow$ unique solution
- $\Rightarrow \chi_{SISO} = (3-2)/3 = 1/3 = 1 Q/T$ [Liang & Veeravalli, 04]

$$\begin{aligned} \hat{y}_{11} &= s_{11}x_1 \\ \hat{y}_{12} &= s_{12}x_2 \\ \hat{y}_{13} &= (s_{11} + s_{12})x_3 \\ \hat{y}_{21} &= s_{21}x_1 \\ \hat{y}_{22} &= s_{22}x_2 \\ \hat{y}_{23} &= (s_{21} + s_{22})x_3 \end{aligned}$$

$$\begin{split} \hat{y}_{11} &= s_{11} x_1 \\ \hat{y}_{12} &= s_{12} x_2 \\ \hat{y}_{13} &= (s_{11} + s_{12}) x_3 \\ \hat{y}_{21} &= s_{21} x_1 \\ \hat{y}_{22} &= s_{22} x_2 \\ \hat{y}_{23} &= (s_{21} + s_{22}) x_3 \end{split}$$

Quadratic equations!

$$\begin{aligned} \hat{y}_{11} &= s_{11}x_1 \\ \hat{y}_{12} &= s_{12}x_2 \\ \hat{y}_{13} &= (s_{11} + s_{12})x_3 \\ \hat{y}_{21} &= s_{21}x_1 \\ \hat{y}_{22} &= s_{22}x_2 \\ \hat{y}_{23} &= (s_{21} + s_{22})x_3 \end{aligned}$$

■ Quadratic equations! Define $z_i = 1/x_i$

 $\begin{array}{ll} \hat{y}_{11} = s_{11}x_1 & z_1\hat{y}_{11} = s_{11} \\ \hat{y}_{12} = s_{12}x_2 & z_2\hat{y}_{12} = s_{12} \\ \hat{y}_{13} = (s_{11} + s_{12})x_3 & z_3\hat{y}_{13} = (s_{11} + s_{12}) \\ \hat{y}_{21} = s_{21}x_1 & z_1\hat{y}_{21} = s_{21} \\ \hat{y}_{22} = s_{22}x_2 & z_2\hat{y}_{22} = s_{22} \\ \hat{y}_{23} = (s_{21} + s_{22})x_3 & z_3\hat{y}_{23} = (s_{21} + s_{22}) \end{aligned}$

• Quadratic equations! Define $z_i = 1/x_i$

 $\begin{array}{ll} \hat{y}_{11} = s_{11}x_1 & z_1\hat{y}_{11} = s_{11} \\ \hat{y}_{12} = s_{12}x_2 & z_2\hat{y}_{12} = s_{12} \\ \hat{y}_{13} = (s_{11} + s_{12})x_3 & z_3\hat{y}_{13} = (s_{11} + s_{12}) \\ \hat{y}_{21} = s_{21}x_1 & z_1\hat{y}_{21} = s_{21} \\ \hat{y}_{22} = s_{22}x_2 & z_2\hat{y}_{22} = s_{22} \\ \hat{y}_{23} = (s_{21} + s_{22})x_3 & z_3\hat{y}_{23} = (s_{21} + s_{22}) \end{aligned}$

- \blacksquare Quadratic equations! Define $z_i=1/x_i$
- 6 linear equations in 7 unknowns: $z_1, z_2, z_3, s_{11}, s_{12}, s_{21}, s_{22}$

 $\begin{array}{ll} \hat{y}_{11} = s_{11}x_1 & z_1\hat{y}_{11} = s_{11} \\ \hat{y}_{12} = s_{12}x_2 & z_2\hat{y}_{12} = s_{12} \\ \hat{y}_{13} = (s_{11} + s_{12})x_3 & z_3\hat{y}_{13} = (s_{11} + s_{12}) \\ \hat{y}_{21} = s_{21}x_1 & z_1\hat{y}_{21} = s_{21} \\ \hat{y}_{22} = s_{22}x_2 & z_2\hat{y}_{22} = s_{22} \\ \hat{y}_{23} = (s_{21} + s_{22})x_3 & z_3\hat{y}_{23} = (s_{21} + s_{22}) \end{array}$

- \blacksquare Quadratic equations! Define $z_i=1/x_i$
- 6 linear equations in 7 unknowns: $z_1, z_2, z_3, s_{11}, s_{12}, s_{21}, s_{22}$ ⇒ infinitely many solutions

 $\begin{array}{ll} \hat{y}_{11} = s_{11}x_1 & 1 \\ \hat{y}_{12} = s_{12}x_2 & z_2 \\ \hat{y}_{13} = (s_{11} + s_{12})x_3 & z_3 \\ \hat{y}_{13} = (s_{21} + s_{22})x_3 & 1 \\ \hat{y}_{21} = s_{21}x_1 & 1 \\ \hat{y}_{22} = s_{22}x_2 & z_2 \\ \hat{y}_{23} = (s_{21} + s_{22})x_3 & z_3 \\ \hat{y}_{23} = (s_{21} + s_{22})x_3 & z_3 \\ \end{array}$

- Quadratic equations! Define $z_i = 1/x_i$
- 6 linear equations in 7 unknowns: $z_1, z_2, z_3, s_{11}, s_{12}, s_{21}, s_{22}$ ⇒ infinitely many solutions
- Transmit 1 pilot-symbol to eliminate ambiguity

 $\begin{array}{ll} \hat{y}_{11} = s_{11}x_1 & 1 \\ \hat{y}_{12} = s_{12}x_2 & z_2 \\ \hat{y}_{13} = (s_{11} + s_{12})x_3 & z_3 \\ \hat{y}_{13} = (s_{21} + s_{22})x_3 & 1 \\ \hat{y}_{21} = s_{21}x_1 & 1 \\ \hat{y}_{22} = s_{22}x_2 & z_2 \\ \hat{y}_{23} = (s_{21} + s_{22})x_3 & z_3 \\ \hat{y}_{23} = (s_{21} + s_{22})x_3 & z_3 \\ \end{array}$

- \blacksquare Quadratic equations! Define $z_i=1/x_i$
- 6 linear equations in 7 unknowns: $z_1, z_2, z_3, s_{11}, s_{12}, s_{21}, s_{22}$ ⇒ infinitely many solutions
- Transmit 1 pilot-symbol to eliminate ambiguity
- 6 linear equations in 6 unknowns: $z_2, z_3, s_{11}, s_{12}, s_{21}, s_{22}$

 $\begin{array}{ll} \hat{y}_{11} = s_{11}x_1 & 1 \\ \hat{y}_{12} = s_{12}x_2 & z_2 \\ \hat{y}_{13} = (s_{11} + s_{12})x_3 & z_3 \\ \hat{y}_{21} = s_{21}x_1 & 1 \\ \hat{y}_{22} = s_{22}x_2 & z_2 \\ \hat{y}_{23} = (s_{21} + s_{22})x_3 & z_3 \\ \hat{y}_{23} = (s_{21} + s_{22})x_3 & z_3 \\ \end{array}$

- \blacksquare Quadratic equations! Define $z_i=1/x_i$
- 6 linear equations in 7 unknowns: $z_1, z_2, z_3, s_{11}, s_{12}, s_{21}, s_{22}$ ⇒ infinitely many solutions
- Transmit 1 pilot-symbol to eliminate ambiguity
- 6 linear equations in 6 unknowns: $z_2, z_3, s_{11}, s_{12}, s_{21}, s_{22}$ ⇒ unique solution

 $\begin{array}{ll} \hat{y}_{11} = s_{11}x_1 & 1 \\ \hat{y}_{12} = s_{12}x_2 & z_2 \\ \hat{y}_{13} = (s_{11} + s_{12})x_3 & z_3 \\ \hat{y}_{13} = (s_{21} + s_{22})x_3 & 1 \\ \hat{y}_{21} = s_{21}x_1 & 1 \\ \hat{y}_{22} = s_{22}x_2 & z_2 \\ \hat{y}_{23} = (s_{21} + s_{22})x_3 & z_3 \\ \hat{y}_{23} = (s_{21} + s_{22})x_3 & z_3 \\ \end{array}$

- \blacksquare Quadratic equations! Define $z_i=1/x_i$
- 6 linear equations in 7 unknowns: $z_1, z_2, z_3, s_{11}, s_{12}, s_{21}, s_{22}$ ⇒ infinitely many solutions
- Transmit 1 pilot-symbol to eliminate ambiguity
- 6 linear equations in 6 unknowns: $z_2, z_3, s_{11}, s_{12}, s_{21}, s_{22}$ ⇒ unique solution

•
$$\Rightarrow \chi_{\text{SIMO}} = (3-1)/3 = 2/3 = 1 - 1/T$$

 $\begin{array}{ll} \hat{y}_{11} = s_{11}x_1 & 1 \\ \hat{y}_{12} = s_{12}x_2 & z_2 \\ \hat{y}_{13} = (s_{11} + s_{12})x_3 & z_3 \\ \hat{y}_{13} = (s_{21} + s_{22})x_3 & 1 \\ \hat{y}_{21} = s_{21}x_1 & 1 \\ \hat{y}_{22} = s_{22}x_2 & z_2 \\ \hat{y}_{23} = (s_{21} + s_{22})x_3 & z_3 \\ \hat{y}_{23} = (s_{21} + s_{22})x_3 & z_3 \\ \end{array}$

- \blacksquare Quadratic equations! Define $z_i=1/x_i$
- 6 linear equations in 7 unknowns: $z_1, z_2, z_3, s_{11}, s_{12}, s_{21}, s_{22}$ ⇒ infinitely many solutions
- Transmit 1 pilot-symbol to eliminate ambiguity
- 6 linear equations in 6 unknowns: $z_2, z_3, s_{11}, s_{12}, s_{21}, s_{22}$ ⇒ unique solution

$$\blacksquare \Rightarrow \chi_{\text{SIMO}} = (3-1)/3 = 2/3 = 1 - 1/T > 1/3 = \chi_{\text{SISO}}$$

Equations for General P
$$(T = 3, Q = 2, M = 2)$$

Solution is unique iff ${\bf B}$ is full-rank

Information Theory

Vector Notations
$$(T = 3, Q = 2, M = 2)$$

$$\underbrace{\begin{bmatrix} y_{11} \\ y_{12} \\ y_{13} \\ y_{21} \\ y_{22} \\ y_{23} \end{bmatrix}}_{\mathbf{y}} = \sqrt{\mathrm{SNR}} \underbrace{\begin{bmatrix} s_{11}x_1 \\ s_{12}x_2 \\ (s_{11} + s_{12})x_3 \\ s_{21}x_1 \\ s_{22}x_2 \\ (s_{21} + s_{22})x_3 \end{bmatrix}}_{\hat{\mathbf{y}}} + \underbrace{\begin{bmatrix} w_{11} \\ w_{12} \\ w_{13} \\ w_{21} \\ w_{22} \\ w_{23} \end{bmatrix}}_{\mathbf{y}}$$

 $\mathbf{P} = \begin{bmatrix} 1 & 0\\ 0 & 1\\ 1 & 1 \end{bmatrix}$

$$\mathbf{s} = [s_{11} \ s_{12} \ s_{21} \ s_{22}]^{\mathsf{T}}$$

 $\mathbf{x} = [x_1 \ x_2 \ x_3]^{\mathsf{T}}$

Transmit $x_i \sim \mathcal{CN}(0,1)$, i.i.d.

Transmit
$$x_i \sim \mathcal{CN}(0,1)$$
, i.i.d.
 $I(\mathbf{x}; \mathbf{y}) = h(\mathbf{y}) - h(\mathbf{y} | \mathbf{x})$

- Transmit $x_i \sim \mathcal{CN}(0,1)$, i.i.d.
- $\blacksquare I(\mathbf{x}; \mathbf{y}) = h(\mathbf{y}) h(\mathbf{y} \,|\, \mathbf{x})$
- y is Gaussian conditioned on $\mathbf{x} \Rightarrow h(\mathbf{y} \,|\, \mathbf{x}) \approx 4 \log(\text{snr})$

Transmit
$$x_i \sim \mathcal{CN}(0,1)$$
, i.i.d.

$$\blacksquare I(\mathbf{x}; \mathbf{y}) = h(\mathbf{y}) - h(\mathbf{y} \,|\, \mathbf{x})$$

 \blacksquare y is Gaussian conditioned on $\mathbf{x} \Rightarrow h(\mathbf{y} \,|\, \mathbf{x}) \approx 4 \log({}_{\mathrm{SNR}})$

$$h(\mathbf{y}) = h\left(\sqrt{\mathrm{SNR}}\hat{\mathbf{y}} + \mathbf{w}\right)$$

Transmit
$$x_i \sim \mathcal{CN}(0,1)$$
, i.i.d.

$$\blacksquare I(\mathbf{x}; \mathbf{y}) = h(\mathbf{y}) - h(\mathbf{y} \,|\, \mathbf{x})$$

• y is Gaussian conditioned on $\mathbf{x} \Rightarrow h(\mathbf{y} \,|\, \mathbf{x}) \approx 4 \log(\text{snr})$

$$egin{aligned} h(\mathbf{y}) &= hig(\sqrt{ ext{SNR}}\hat{\mathbf{y}} + \mathbf{w}ig) \ &\geq hig(\sqrt{ ext{SNR}}\hat{\mathbf{y}} + \mathbf{w} \,|\, \mathbf{w}ig) \end{aligned}$$

Transmit
$$x_i \sim \mathcal{CN}(0,1)$$
, i.i.d.

$$\blacksquare I(\mathbf{x}; \mathbf{y}) = h(\mathbf{y}) - h(\mathbf{y} \,|\, \mathbf{x})$$

y is Gaussian conditioned on $\mathbf{x} \Rightarrow h(\mathbf{y} \,|\, \mathbf{x}) \approx 4 \log(\text{snr})$

$$\begin{split} h(\mathbf{y}) &= h\left(\sqrt{\mathrm{SNR}}\hat{\mathbf{y}} + \mathbf{w}\right) \\ &\geq h\left(\sqrt{\mathrm{SNR}}\hat{\mathbf{y}} + \mathbf{w} \,|\, \mathbf{w}\right) \\ &= h\left(\sqrt{\mathrm{SNR}}\hat{\mathbf{y}}\right) \end{split}$$

Transmit
$$x_i \sim \mathcal{CN}(0,1)$$
, i.i.d.

$$\blacksquare I(\mathbf{x}; \mathbf{y}) = h(\mathbf{y}) - h(\mathbf{y} \,|\, \mathbf{x})$$

y is Gaussian conditioned on $\mathbf{x} \Rightarrow h(\mathbf{y} \,|\, \mathbf{x}) \approx 4 \log(\text{snr})$

$$h(\mathbf{y}) = h\left(\sqrt{\mathrm{SNR}}\hat{\mathbf{y}} + \mathbf{w}\right)$$

$$\geq h\left(\sqrt{\mathrm{SNR}}\hat{\mathbf{y}} + \mathbf{w} \mid \mathbf{w}\right)$$

$$= h\left(\sqrt{\mathrm{SNR}}\hat{\mathbf{y}}\right)$$

$$= 6\log(\mathrm{SNR}) + h(\hat{\mathbf{y}})$$

finite?

Transmit
$$x_i \sim \mathcal{CN}(0,1)$$
, i.i.d.

- $I(\mathbf{x}; \mathbf{y}) = h(\mathbf{y}) h(\mathbf{y} \mid \mathbf{x}) \ge \frac{6}{6} \log(\text{SNR}) \frac{4}{6} \log(\text{SNR}) + c$
- **y** is Gaussian conditioned on $\mathbf{x} \Rightarrow h(\mathbf{y} \,|\, \mathbf{x}) \approx 4 \log(\text{snr})$

$$\begin{split} h(\mathbf{y}) &= h\left(\sqrt{\mathrm{SNR}}\hat{\mathbf{y}} + \mathbf{w}\right) \\ &\geq h\left(\sqrt{\mathrm{SNR}}\hat{\mathbf{y}} + \mathbf{w} \mid \mathbf{w}\right) \\ &= h\left(\sqrt{\mathrm{SNR}}\hat{\mathbf{y}}\right) \\ &= 6\log(\mathrm{SNR}) + h(\hat{\mathbf{y}}) \\ &= 6\log(\mathrm{SNR}) + h(\hat{\mathbf{y}}) \end{split}$$

Transmit
$$x_i \sim \mathcal{CN}(0,1)$$
, i.i.d.

- $I(\mathbf{x}; \mathbf{y}) = h(\mathbf{y}) h(\mathbf{y} \mid \mathbf{x}) \ge \frac{6}{6} \log(\text{SNR}) \frac{4}{6} \log(\text{SNR}) + c$
- **y** is Gaussian conditioned on $\mathbf{x} \Rightarrow h(\mathbf{y} \,|\, \mathbf{x}) \approx 4 \log(\text{snr})$

$$\begin{split} h(\mathbf{y}) &= h\left(\sqrt{\mathrm{SNR}}\hat{\mathbf{y}} + \mathbf{w}\right) \\ &\geq h\left(\sqrt{\mathrm{SNR}}\hat{\mathbf{y}} + \mathbf{w} \mid \mathbf{w}\right) \\ &= h\left(\sqrt{\mathrm{SNR}}\hat{\mathbf{y}}\right) \\ &= 6\log(\mathrm{SNR}) + \underbrace{h(\hat{\mathbf{y}})}_{\text{finite}^2} \end{split}$$

$$\chi_{\text{SIMO}} \ge (6-4)/3 = 2/3$$

Transmit
$$x_i \sim \mathcal{CN}(0,1)$$
, i.i.d.

- $I(\mathbf{x}; \mathbf{y}) = h(\mathbf{y}) h(\mathbf{y} \mid \mathbf{x}) \ge 6 \log(\text{SNR}) 4 \log(\text{SNR}) + c$
- **y** is Gaussian conditioned on $\mathbf{x} \Rightarrow h(\mathbf{y} \,|\, \mathbf{x}) \approx 4 \log(\text{snr})$

$$\begin{aligned} h(\mathbf{y}) &= h\left(\sqrt{\mathrm{SNR}}\hat{\mathbf{y}} + \mathbf{w}\right) \\ &\geq h\left(\sqrt{\mathrm{SNR}}\hat{\mathbf{y}} + \mathbf{w} \mid \mathbf{w}\right) \\ &= h\left(\sqrt{\mathrm{SNR}}\hat{\mathbf{y}}\right) \\ &= 6\log(\mathrm{SNR}) + \underbrace{h(\hat{\mathbf{y}})}_{\text{finite}^2} \end{aligned}$$

$$\chi_{\text{SIMO}} \ge (\mathbf{6} - \mathbf{4})/3 = 2/3 > 1/3 = \chi_{\text{SISO}}$$

Is $h(\hat{\mathbf{y}})$ Finite? Change of Variables

$$\hat{\mathbf{y}} = \begin{bmatrix} s_{11}x_1 \\ s_{12}x_2 \\ (s_{11} + s_{12})x_3 \\ s_{21}x_1 \\ s_{22}x_2 \\ (s_{21} + s_{22})x_3 \end{bmatrix}$$
$$\hat{\mathbf{y}} = \begin{bmatrix} s_{11}x_1 \\ s_{12}x_2 \\ (s_{11} + s_{12})x_3 \\ s_{21}x_1 \\ s_{22}x_2 \\ (s_{21} + s_{22})x_3 \end{bmatrix}$$

■ $h(\hat{\mathbf{y}}) \ge h(\hat{\mathbf{y}} | x_1)$ (pilot-symbol in the noiseless case)

$$\hat{\mathbf{y}} = \begin{bmatrix} s_{11}x_1\\s_{12}x_2\\(s_{11}+s_{12})x_3\\s_{21}x_1\\s_{22}x_2\\(s_{21}+s_{22})x_3 \end{bmatrix}$$

■ $h(\hat{\mathbf{y}}) \ge h(\hat{\mathbf{y}} | x_1)$ (pilot-symbol in the noiseless case) ■ For fixed x_1 , the function $\hat{\mathbf{y}} = \hat{\mathbf{y}}(\mathbf{s}, x_2, x_3)$ is a bijection

$$\hat{\mathbf{y}} = \begin{bmatrix} s_{11}x_1\\s_{12}x_2\\(s_{11}+s_{12})x_3\\s_{21}x_1\\s_{22}x_2\\(s_{21}+s_{22})x_3 \end{bmatrix}$$

■ $h(\hat{\mathbf{y}}) \ge h(\hat{\mathbf{y}} | x_1)$ (pilot-symbol in the noiseless case) ■ For fixed x_1 , the function $\hat{\mathbf{y}} = \hat{\mathbf{y}}(\mathbf{s}, x_2, x_3)$ is a bijection

Change of Variables Lemma:

$$h(\hat{\mathbf{y}} \mid x_1) = h(\mathbf{s}, x_2, x_3 \mid x_1) + \mathbb{E}_{\mathbf{s}, \mathbf{x}} \log \left| \det \frac{\partial \hat{\mathbf{y}}}{\partial(\mathbf{s}, x_2, x_3)} \right|$$

$$\hat{\mathbf{y}} = \begin{bmatrix} s_{11}x_1\\s_{12}x_2\\(s_{11}+s_{12})x_3\\s_{21}x_1\\s_{22}x_2\\(s_{21}+s_{22})x_3 \end{bmatrix}$$

■ $h(\hat{\mathbf{y}}) \ge h(\hat{\mathbf{y}} | x_1)$ (pilot-symbol in the noiseless case) ■ For fixed x_1 , the function $\hat{\mathbf{y}} = \hat{\mathbf{y}}(\mathbf{s}, x_2, x_3)$ is a bijection

Change of Variables Lemma:

$$h(\hat{\mathbf{y}} \mid x_1) = \underbrace{h(\mathbf{s}, x_2, x_3 \mid x_1)}_{\text{finite!}} + 2\underbrace{\mathbb{E}_{\mathbf{s}, \mathbf{x}} \log \left| \det \frac{\partial \hat{\mathbf{y}}}{\partial(\mathbf{s}, x_2, x_3)} \right|}_{\text{finite?}}$$

$$\mathbb{E}_{\mathbf{s},\mathbf{x}} \log \left| \det \frac{\partial \hat{\mathbf{y}}}{\partial (\mathbf{s}, x_2, x_3)} \right| > -\infty?$$

$$\mathbb{E}_{\mathbf{s},\mathbf{x}} \log \left| \det \frac{\partial \hat{\mathbf{y}}}{\partial(\mathbf{s}, x_2, x_3)} \right| > -\infty?$$

Factorize:
$$\frac{\partial \hat{\mathbf{y}}}{\partial (\mathbf{s}, x_2, x_3)} = J_1(\mathbf{x}) J_2(\mathbf{s}) J_3(\mathbf{x})$$

$$\mathbb{E}_{\mathbf{s},\mathbf{x}} \log \left| \det \frac{\partial \hat{\mathbf{y}}}{\partial(\mathbf{s}, x_2, x_3)} \right| > -\infty?$$

Factorize:
$$\frac{\partial \hat{\mathbf{y}}}{\partial (\mathbf{s}, x_2, x_3)} = J_1(\mathbf{x}) J_2(\mathbf{s}) J_3(\mathbf{x})$$

 $J_1(\mathbf{x})$ and $J_3(\mathbf{x})$ are diagonal matrices

$$\mathbb{E}_{\mathbf{s},\mathbf{x}}\log\left|\det \frac{\partial \hat{\mathbf{y}}}{\partial(\mathbf{s},x_2,x_3)}\right| > -\infty?$$

Factorize:
$$\frac{\partial \hat{\mathbf{y}}}{\partial (\mathbf{s}, x_2, x_3)} = J_1(\mathbf{x}) J_2(\mathbf{s}) J_3(\mathbf{x})$$

$$J_1(\mathbf{x})$$
 and $J_3(\mathbf{x})$ are diagonal matrices

• det $J_2(\mathbf{s})$ is a homogeneous polynomial:

$$\det J_2(\lambda \mathbf{s}) = \lambda^D \det J_2(\mathbf{s}), \ \forall \lambda \in \mathbb{C}$$

Resolution of Singularities (Cont'd)

Polar coordinates: $\mathbf{s} \rightarrow (r, \theta)$

$$\begin{aligned} \left| \int_{\mathbb{C}^{RQ}} \exp(-\|\mathbf{s}\|^2) \log |\det J_2(\mathbf{s})| \, d\mathbf{s} \right| \\ &\leq \left| \int_{\mathbb{C}^{RQ}} \exp(-\|s\|^2) \log \left| \det J_2(\mathbf{s}/\|s\|^2) \right| \, d\mathbf{s} \right| + O(1) \\ &\leq \int_0^\infty \exp(-r^2) r^{2D-1} dr \times \int_\Delta |\log |f(\theta)|| \, d\theta + O(1) \end{aligned}$$

where

•
$$\Delta = [0,\pi]^{2D-2} \times [0,2\pi]$$
 is a compact set

• f is a real analytic function

Resolution of Singularities (Cont'd)

Hironaka's Theorem implies: If $f \not\equiv 0$ is a real analytic function, then $\int_{\Delta} |\log |f(\theta)|| \, d\theta < \infty.$

The Technical Condition on $\mathbf{P}:$ not Just Rank

	p_{11}	p_{12}	0	0	0	0]	
$f \not\equiv 0$ iff	p_{21}	p_{22}	0	0	p_{21}	0	is full-rank
	p_{31}	p_{32}	0	0	0	p_{31}	
	0	0	p_{11}	p_{12}	0	0	
	0	0	p_{21}	p_{22}	p_{22}	0	
	0	0	p_{31}	p_{32}	0	p_{32}	

The Technical Condition on $\mathbf{P}:$ not Just Rank

$$f \not\equiv 0 \text{ iff } \begin{bmatrix} p_{11} & p_{12} & 0 & 0 & 0 & 0 \\ p_{21} & p_{22} & 0 & 0 & p_{21} & 0 \\ p_{31} & p_{32} & 0 & 0 & 0 & p_{31} \\ 0 & 0 & p_{11} & p_{12} & 0 & 0 \\ 0 & 0 & p_{21} & p_{22} & p_{22} & 0 \\ 0 & 0 & p_{31} & p_{32} & 0 & p_{32} \end{bmatrix} \text{ is full-rank}$$

For T = 3, Q = 2, M = 2 equivalent to:

Every two rows of \mathbf{P} are linearly independent

The Technical Condition on $\mathbf{P}:$ not Just Rank

$$f \not\equiv 0 \text{ iff } \begin{bmatrix} p_{11} & p_{12} & 0 & 0 & 0 & 0 \\ p_{21} & p_{22} & 0 & 0 & p_{21} & 0 \\ p_{31} & p_{32} & 0 & 0 & 0 & p_{31} \\ 0 & 0 & p_{11} & p_{12} & 0 & 0 \\ 0 & 0 & p_{21} & p_{22} & p_{22} & 0 \\ 0 & 0 & p_{31} & p_{32} & 0 & p_{32} \end{bmatrix} \text{ is full-rank}$$

For T = 3, Q = 2, M = 2 equivalent to:

Every two rows of \mathbf{P} are linearly independent

For example,
$$\mathbf{P} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
 satisfies this condition

Open problems

- MIMO
- Stationary Channel Model

Thank you