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Eliminating the Noncoherent Penalty
by Adding Receive Antennas (Only!)
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Main Result [VM et. al., 2012]

Under technical conditions on P,

�SIMO = min[1 � 1/T, R(1 � Q/T )]

Multiple antennas at the receiver can recover degrees of freedom
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Fig. 1. The capacity pre-log of the SIMO channel (3).

C. Property (A) is mild

Property (A) is not very restrictive and is satisfied by many practically relevant channel covariance

matrices R. For example, removing an arbitrary set of T � Q columns from a T ⇥ T discrete

Fourier transform (DFT) matrix results in a matrix that satisfies Property (A) when T is prime [16].

(Weighted) DFT covariance matrices arise naturally in so-called basis-expansion models for time-

selective channels [9].

Property (A) can further be shown to be satisfied by “generic” matrices R. Specifically, if the

entries of R are chosen randomly and independently from a continuous distribution [17, Sec. 2-

3, Def. (2)] (i.e., a distribution with a well-defined probability density function (PDF)), then the

resulting matrix R will satisfy Property (A) with probability one. The proof of this statement follows

from a union bound argument together with the fact that N independent N -dimensional vectors

drawn independently from a continuous distribution are linearly independent with probability one.

V. PROOF OF THE UPPER BOUND (12)

The proof of (12) consists of two parts. First, in Section V-A, we prove that �  R(1�Q/T ). This

will be accomplished by generalizing—to the SIMO case—the approach developed in [9, Prop. 4]

for establishing an upper bound on the SISO capacity pre-log. Second, in Section V-B, we prove that

May 18, 2012 DRAFT

Multiple antennas at the receiver can recover degrees of freedom
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Implications

M = 2, T � 2Q � 1

�SIMO = 1 � 1/T
!
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�SISO

M = 2, T ! 1, Q ⇡ T/2 (i.e., Q/T = 1/2)

�SISO = 1 � Q/T ⇡ 1/2

�SIMO = 1 � 1/T ⇡ 1

The “channel identification penalty” vanishes if a second receive
antenna is used
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Coherent SISO Channel T = 3

ŷ1 = h1x1

ŷ2 = h2x2

ŷ3 = h3x3

3 linear equations in 3 unknowns

) unique solution

) �SISO = 3/3 = 1 [Telatar, 99]
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Noncoherent SISO Channel T = 3, Q = 2
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ŷ3 = (s1 + s2)x3

Quadratic equations! Define z
i

= 1/x
i

3 linear equations in 5 unknowns: z1, z2, z3, s1, s2

) infinitely many solutions

Transmit 2 pilot-symbols to eliminate ambiguity

3 linear equations in 3 unknowns: z3, s1, s2

) unique solution

) �SISO = (3 � 2)/3 = 1/3 = 1 � Q/T [Liang & Veeravalli, 04]

14 / 27



Noncoherent SISO Channel T = 3, Q = 2

2

4
h1

h2

h3

3

5
=

2

4
1 0

0 1

1 1

3

5

| {z }
P


s1

s2
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1ŷ2 = s2
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1ŷ2 = s2
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ŷ21 = s21x1
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ŷ23 = (s21 + s22)x3
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ŷ13 = (s11 + s12)x3
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ŷ11 = s11x1
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ŷ13 = (s11 + s12)x3
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z3ŷ23 = (s21 + s22)

Quadratic equations! Define z
i

= 1/x
i

6 linear equations in 7 unknowns: z1, z2, z3, s11, s12, s21, s22

) infinitely many solutions

Transmit 1 pilot-symbol to eliminate ambiguity

6 linear equations in 6 unknowns: z2, z3, s11, s12, s21, s22

) unique solution

) �SIMO = (3 � 1)/3 = 2/3 = 1 � 1/T

> 1/3 = �SISO

15 / 27



Noncoherent SIMO Channel (T = 3, Q = 2, M = 2)
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ŷ12 = s12x2
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z2ŷ22 = s22
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z3ŷ23 = (s21 + s22)

Quadratic equations! Define z
i

= 1/x
i

6 linear equations in 7 unknowns: z1, z2, z3, s11, s12, s21, s22

) infinitely many solutions

Transmit 1 pilot-symbol to eliminate ambiguity

6 linear equations in 6 unknowns: z2, z3, s11, s12, s21, s22

) unique solution

) �SIMO = (3 � 1)/3 = 2/3 = 1 � 1/T

> 1/3 = �SISO

15 / 27



Noncoherent SIMO Channel (T = 3, Q = 2, M = 2)
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Equations for General P (T = 3, Q = 2, M = 2)

2

6666664

p11 p12 0 0 0 0

p21 p22 0 0 ŷ12 0

p31 p32 0 0 0 ŷ13

0 0 p11 p12 0 0

0 0 p21 p22 ŷ22 0

0 0 p31 p32 0 ŷ23

3

7777775

| {z }
B

2

6666664

s11

s12

s21

s22

�z2

�z3

3

7777775
=

2

6666664

ŷ11

0

0

ŷ21

0

0

3

7777775

Solution is unique i↵ B is full-rank
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Vector Notations (T = 3, Q = 2, M = 2)

2

6666664

y11

y12

y13

y21

y22

y23

3

7777775

| {z }
y

=

p
snr

2

6666664

s11x1

s12x2

(s11 + s12)x3

s21x1

s22x2

(s21 + s22)x3

3

7777775

| {z }
ŷ

+

2

6666664

w11

w12

w13

w21

w22

w23

3

7777775

| {z }
w

P =

2

4
1 0

0 1

1 1

3

5
s = [s11 s12 s21 s22]

T

x = [x1 x2 x3]
T
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The Lower Bound (T = 3, Q = 2, M = 2)

Transmit x
i

⇠ CN (0, 1), i.i.d.

I(x;y) = h(y) � h(y |x)

� 6 log(snr) � 4 log(snr) + c

y is Gaussian conditioned on x ) h(y |x) ⇡ 4 log(snr)

h(y) = h
�p

snrˆ

y + w

�

� h
�p

snrˆ

y + w |w
�

= h
�p

snrˆ

y

�

= 6 log(snr) + h(

ˆ

y)|{z}
finite?

�SIMO � (6 � 4)/3 = 2/3

> 1/3 = �SISO
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Is h(ŷ) Finite? Change of Variables

ˆ

y =

2

6666664

s11x1

s12x2

(s11 + s12)x3

s21x1

s22x2

(s21 + s22)x3

3

7777775

h(

ˆ

y) � h(

ˆ

y | x1) (pilot-symbol in the noiseless case)
For fixed x1, the function ˆ

y =

ˆ

y(s, x2, x3) is a bijection
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y =

ˆ

y(s, x2, x3) is a bijection

Change of Variables Lemma:

h(

ˆ

y | x1) = h(s, x2, x3 | x1) + E
s,x

log

����det

@ˆ

y

@(s, x2, x3)

����
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+2 E
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log
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y

@(s, x2, x3)
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| {z }

finite?
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Resolution of Singularities

How can we show that

E
s,x

log

����det

@ˆ

y

@(s, x2, x3)

���� > �1?

Factorize: @ŷ

@(s,x2,x3)
= J1(x)J2(s)J3(x)

J1(x) and J3(x) are diagonal matrices

det J2(s) is a homogeneous polynomial:

det J2(�s) = �D

det J2(s), 8� 2 C
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Resolution of Singularities (Cont’d)

Polar coordinates: s ! (r, ✓)

����
Z

CRQ
exp(�ksk2

) log |det J2(s)| ds
����


����
Z

CRQ
exp(�ksk2

) log

��
det J2(s/ksk2

)

�� ds
���� + O(1)


Z 1

0
exp(�r2

)r2D�1dr ⇥
Z

�
|log |f(✓)|| d✓ + O(1)

where

� = [0, ⇡]

2D�2 ⇥ [0, 2⇡] is a compact set

f is a real analytic function
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Resolution of Singularities (Cont’d)

Hironaka’s Theorem implies:

If f 6⌘ 0 is a real analytic function, then
Z

�
|log |f(✓)|| d✓ < 1.60 Singularity theory

f (x)

g

f (g(u)) = S u1
k1 u2

k2 ud
kd

R

Proper
analytic

Analytic

d Manifold U

Normal crossing

W

R

...

Fig. 2.4. Resolution of singularities

(4) In this theorem, we used the notation,

g−1(C) = {u ∈ U ; g(u) ∈ C},

and

W \ W0 = {x ∈ W ; x /∈ W0},

U \ U0 = {u ∈ U ; u /∈ U0}.

(5) Although g is a real analytic morphism of U \ U0 and W \ W0, it is not of
U and W in general. It is not a one-to-one map from U0 to W0 in general.
(6) This theorem holds for any analytic function f such that f (0) = 0, even if
0 is not a critical point of f .
(7) The triple (W,U, g) is not unique. There is an algebraic procedure by
which we can find a triple, which is shown in Chapter 3. The manifold U is not
orientable in general.
(8) If f (x) ≥ 0 in the neighborhood of the origin, then all of k1, k2, . . . , kd in
eq.(2.7) should be even integers and S = 1, hence eq.(2.7) can be replaced by

f (g(u)) = u2k1
1 u2k2

2 · · · u2kd

d . (2.9)

(9) The theorem shows resolution of singularities in the neighborhood of the
origin. For the other point x0, if f (x0) = 0, then the theorem can be applied to
x0 ∈ Rd , which implies that there exists another triple (W,U, g) such that

f (g(u) − x0) = S uk,

g′(u) = b(u) uh,

where S, k, h are different from those of the origin.
(10) Let K be a compact set in an open domain of the real analytic function
f (x). By collecting and gluing triples {W,U, g} for all points of K , we obtain

Polar coordinates: s ! (r, ✓)
����
Z

CRQ
exp(�ksk2

) log |det J2(s)| ds
����


����
Z

CRQ
exp(�ksk2

) log

��
det J2(s/ksk2

)

�� ds
���� + O(1)


Z 1

0
exp(�r2

)r2D�1dr ⇥
Z

�
|log |f(✓)|| d✓ + O(1)

where
� = [0, ⇡]

2D�2 ⇥ [0, 2⇡] is a compact set
f is a real analytic function
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The Technical Condition on P: not Just Rank

f 6⌘ 0 i↵

2

6666664

p11 p12 0 0 0 0

p21 p22 0 0 p21 0

p31 p32 0 0 0 p31

0 0 p11 p12 0 0

0 0 p21 p22 p22 0

0 0 p31 p32 0 p32

3

7777775
is full-rank

For T = 3, Q = 2, M = 2 equivalent to:

Every two rows of P are linearly independent

For example, P =

2

4
1 0

0 1

1 1

3

5 satisfies this condition
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Connection to Linear Algebra

2

6666664

p11 p12 0 0 0 0

p21 p22 0 0 p21 0

p31 p32 0 0 0 p31

0 0 p11 p12 0 0

0 0 p21 p22 p22 0

0 0 p31 p32 0 p32

3

7777775
is full-rank

i↵

2

6666664

p11 p12 0 0 0 0

p21 p22 0 0 ŷ12 0

p31 p32 0 0 0 ŷ13

0 0 p11 p12 0 0

0 0 p21 p22 ŷ22 0

0 0 p31 p32 0 ŷ23

3

7777775
= B is full-rank a.e.
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Open problems

MIMO

Stationary Channel Model
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Thank you
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