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An Interference Network with Relays

K Relay 
Terminals
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• Relays have no traffic requirements

• No direct links between sources
and destinations

• Single-antenna transceivers

• No cooperation between sources
and between destinations

• Zone free of relays around each
source and destination

• Bounded area
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Cut-Set Upper Bound on Network Capacity
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• Max-flow min-cut theorem∑
i∈S,j ∈Sc

R(i,j) ≤ I
(
X(S);Y(Sc)|X(Sc)

)

yields (for largeK)

C ≤ M

2
log(K) +O(1)

• This bound is achieved with
cooperation in a MIMO system
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Motivation

Question: Can we achieve the cut set bound without cooperation?

Yes: [Bölcskei, Nabar 2004] show a protocol that

• ForM fixed andK →∞ realizes distributed orthogonalization

• C = (M/2) log(K) +O(1)
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System and Channel Model
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System and Channel Model Cont’d

• rk =
∑M
m=1Ek,mhk,msm + zk

• ym =
∑K
k=1Pm,kfm,ktk + wm

• E ≤ Ek,m ≤ E, P ≤ Pm,k ≤ P ∀k,m

• hk,m, fm,k ∼ CN (0, 1), i.i.d.

• zk, wm ∼ CN (0, σ2), i.i.d.

• Gaussian codebooks are used

• E[|sm|2] ≤ 1/M, E[|tm|2] ≤ Prel/K
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Protocol 1 (P1) from [Bölcskei, Nabar ’04]
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• K relay terminals are
partitioned intoM
groups of equal size

⇒ K/M relays in each
group

• Each group is assigned
to one S-D pair

• Each relay knows
phases of its assigned
backward and forward
channels
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Smart Scattering

.
.
.

S1

S2

SM

.

.

.

D1

D2

DM

h1

h2

hM fM

f2

f1

MF MF

Scalingh̃
∗

1 = e
−j arg(h1) f̃∗

1 = e−j arg(f1)

Distributed multi-stream separation through smart scatterers
performing matched-filtering
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Capacity Scaling for largeK and fixedM
• For fixedM andK → ∞, lower bound approaches upper bound and

the network capacity converges (w.p.1) to

C =
M

2
log(K) +O(1)

• Asymptotically inK cooperation between destination terminals is
not needed to achieve network capacity

Questions:

• Is distributed orthogonalization possible if bothM,K →∞?

• If so, howK should scale withM?
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[VM et al., 2005]: K should grow asM3

ForM,K →∞, the per S-D pair capacity scales as

CP1 =
1

2
log

(
1 + Θ

(
K

M3

))

Question: Is there protocol which requires less relays to realize
distributed orthogonalization?
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First...

Proof Techniques

11



I-O relation of Sm→ Dm link

Independent decoding. I-O relation of Sm → Dm link is written as

ym = sm

K∑
k=1

am,mk︸ ︷︷ ︸
effective channel gain (gm)

+
∑
m̂6=m

sm̂

K∑
k=1

am,m̂k︸ ︷︷ ︸
interference (im)

+
K∑
k=1

bmk zk + wm
√
K︸ ︷︷ ︸

noise (nm)

where

am,m̂k ∼ f̃∗p(k),k fm,k h̃
∗
k,p(k) hk,m̂

p(k) = m iff relay k servesmth S-D pair
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Lower Bound

• I-O relation of Sm → Dm link

ym = E[gm]sm + (gm − E[gm])︸ ︷︷ ︸
g̃m

sm + im + nm︸ ︷︷ ︸
wm

– effective channel gain has non-zero mean, i.e., E[gm] > 0

– zero-mean wm is not Gaussian
– wm and g̃m are not statistically independent

• Slight modification of a technique from [Médard, 2000] yields

I(ym; sm) ≥ log

(
1 +

(E[gm])
2

Var[g̃m] + Var[wm]

)
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Outage Analysis: “Crystallization”
• Each destination terminal knows fading coefficients in entire network

• I-O relation of Sm → Dm link given by

ym = gmsm + im + nm

• Conditioned on {hk,m, fm,k}∀m,k interference im and noise nm are
Gaussian

⇒ Im =
1

2
log
(

1 + SINRm|{hk,m,fm,k}
)

where
SINRm|{hk,m,fm,k} =

|gm|2

σ2
i + σ2

n

Goal: Analyze behavior of the random variable SINR whenM,K →∞
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Proof Techniques for Concentration Results

SINR of Sm → Dm link given by

SINR =

∣∣∣∑k:p(k)=m a
m,m
k +

∑
k:p(k)6=m a

m,m
k

∣∣∣2∑
m̂6=m

∣∣∣∑K
k=1 a

m,m̂
k

∣∣∣2 + σ2M
∑K
k=1 |bmk |

2
+KMσ2

• Consider each term in the numerator and denominator separately

• Use Chernoff bound to estimate large deviations from mean

– gives asymptotically tight results
– independence of summands is required, which is not the case for
a’s and b’s
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Main Tool: Truncation Lemma (thanks to O. Zeitouni)
Have to deal with sums of the form SN =

∑N
i=1AiXiφi, where

• {Xi}∞i=1 (not necessarily independent) with common cdf FX

• i.i.d. {φi}∞i=1 (−1 ≤ φi ≤ 1)

• positive and uniformly bounded coefficients {Ai}∞i=1 (0 ≤ Ai ≤ A∗)

• for all x ≥ x0 > 0, we have 1− FX(x) + FX(−x) ≤ Ae−αxβ

Then, for allN and t such that δ2 ≥ x0

P
{
|SN − E{SN}| ≥

√
Nδ
}
≤ 2 exp

{
−2δ2β/(β+2)

(A∗)2γ

}
+NA exp

{
−αδ2β/(β+2)

}

16



SINR is in Narrow Interval Around Mean with High Prob.
Theorem 1. There exist constants C1, C2, C3, C4, C5, C6,M0 andK0 such
that for anyM ≥ M0 andK ≥ K0 for any x > 1, the probability Pout,P1

of the event SINRP1 /∈ [LP1, UP1], where

LP1 =
π2

16

P E2

P E
2

(
max

[
0,K − C1M

√
Kx
])2

M2(M − 1)K + C2M5/2Kx+ C3M3

UP1 =
π2

16

P E
2

P E2

(
K + C4M

√
Kx
)2

max[0,M2(M − 1)K − C5M5/2Kx] + C6M3

satisfies the following inequality

Pout,P1 ≤ Poly1(M,K)e−∆1x
2/7
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Outage Interpretation

UC

Pout PDF of I

L R

• FixK = M3

• C = 1
2 log

(
1 + π2

16
P E2

P E
2

)
• ChooseR < C

• Choose Pout (gives x)

• ChooseK such that
L = R
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Proof of Ergodic Capacity Upper Bound

• Upper bound on per S-D pair capacity

C ≤ 1

2
log(1 + E {SINR(H,F)})

• Use that
E{X} =

∫ ∞
0

x pX(x)dx ≤
∞∑
n=0

nP {X > n}

• Using the tail behavior result for SINR, we get

P

{
SINR > (K + o(K)x)

2

M3K − o(M3K)x

}
≤ Poly(M,K) e−∆xβ
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Network “Crystallization”

• SINRs of effective channels Sm → Dm (m = 1, 2, . . . ,M ) converge to
deterministic limit asM,K →∞

• Per-stream diversity order→∞ asM,K →∞

• Individual SISO fading links in the network converge to independent
AWGN links (network “crystallizes”)

• The exponent 2/7, which characterizes the speed of convergence, is
unlikely to be fundamental

• Theorems 1 can be reformulated to provide bounds on outage
probability
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Can we do better thanK = M 3?
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Protocol 2 (P2) from [Dana and Hassibi, 2003]

Source

terminals

Destination

terminalsRelay terminals

First hop Second hop

...
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...
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......

• No relay partitioning

• Each relay knows
phases of all M
backward and all M
forward channels
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P2: Each Relay Assists All S-D Pairs
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(

M
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ForM,K →∞, the per S-D pair capacity scales as

CP2 =
1

2
log

(
1 + Θ

(
K

M2

))
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Conclusions

• Network decouples if rate of growth ofK as function ofM is
sufficiently fast

• P1 and P2 trade amount of CSI at relays for required rate of growth of
relays

• The individual Sm → Dm fading links converge to independent AWGN
links asM,K →∞⇒ Network crystallizes

• Back from infinity: Characterizing “crystallization rate” could serve as
a general tool to study large wireless networks

• Network capacity scaling for P2 is
√
T , where T = 2M +K
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Cooperation
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Interference Relay Network with Cooperation at Relays
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P1 with Cooperation
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P2 with Cooperation
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Cooperation Increases Per-Stream Array Gain

• Cooperation at the relay level increases the per-stream array gain

• Per-stream array gain can be decomposed asA = AdAc, where

– Distributed array gain

Ad,P1 = KN/M3 Ad,P2 = KN/M2

– Array gain due to cooperation at relay level

Ac,P1 = Ac,P2 = N
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Cooperation vs. No Cooperation

• Consider a network with a total of T relay antenna elements

• No cooperation at the relay level

C
(nc)
P1 =

1

2
log

(
1 + Θ

(
T

M3

))

• Cooperation at the relay level in groups ofN antenna elements

C
(c)
P1 =

1

2
log

(
1 + Θ

(
TN

M3

))
Cooperation leads to N -fold reduction in total number of relay
antenna elements needed to achieve given per S-D pair capacity
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Thank You!
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Backup
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Convergence of SINR CDF to Step-Function
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