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Abstract— We analyze fading interference relay networks
where M single-antenna source-destination terminal pairs com-
municate concurrently and in the same frequency band through
a set of K single-antenna relays using half-duplex two-hop
relaying. The relays do not have channel state information,
perform amplify-and-forward (AF) relaying, and the destina-
tion terminals can cooperate and perform joint decoding. Our
main results are as follows:

• We compute the per source-destination terminal pair
capacity for M, K → ∞, with K/M → β fixed, using
tools from random matrix theory.

• We show that for β →∞, the AF relay network is turned
into a point-to-point multiple-input multiple-output link
and thus extend the result found previously for the finite
M, K →∞ case in [1] to the M, K → ∞ case.

I. INTRODUCTION

This paper deals with interference fading relay networks
where M single-antenna source-destination terminal pairs
communicate concurrently and in the same frequency band
through half-duplex two-hop relaying over a common set of
K single-antenna relay terminals (see Fig. 1). The relays do
not have channel state information (CSI), perform amplify-
and-forward (AF) relaying, and the destination terminals can
cooperate and perform joint decoding.

A. Contributions and Relation to Previous Work

Previous work in [1] demonstrated that for M fixed
and K → ∞, AF relaying turns the fading interference
relay network into a fading point-to-point multiple-input
multiple-output (MIMO) link, showing that the use of relays
as active scatterers can recover spatial multiplexing gain in
poor scattering environments. Our main contributions are as
follows:
• The proof techniques in [1] rely heavily on M being

finite. Building on results reported in [2], we compute
the M,K → ∞ (with K/M → β fixed) per source-
destination terminal pair capacity using tools from ran-
dom matrix theory [3], [4]. The limiting eigenvalue
density function of the effective MIMO channel ma-
trix between the source and destination terminals is
characterized in terms of its Stieltjes transform as the
unique solution of a fixed-point equation, which can be
transformed into a fourth-order equation. Upon solving
this fourth-order equation and applying the inverse
Stieltjes transform, the remaining steps to computing the
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limiting eigenvalue density function, and, based on that,
the asymptotic network capacity, need to be carried out
numerically. We show that this can be accomplished in
a straightforward fashion and provide a corresponding
algorithm.

• We show that for β → ∞, the fading AF relay
network is turned into a fading point-to-point MIMO
link (in a sense to be made precise in Section IV), thus
establishing the large-M,K analog of the result found
previously for the finite-M,K →∞ case in [1].

B. Notation

The superscripts T , H , and ∗ stand for transposition,
conjugate transpose, and element-wise conjugation, respec-
tively. log(·) stands for the logarithm to base 2. I[x] = 1
if x is true and I[x] = 0 if x is false. The unit step
function u(x) = 0 for x < 0 and u(x) = 1 for x ≥ 0.
E denotes the expectation operator. A circularly symmetric
zero-mean complex Gaussian random variable (RV) is a RV
Z = X+j Y ∼ CN (0, σ2), where X and Y are independent
identically distributed (i.i.d.) N (0, σ2/2). δ(x) is the Dirac
delta distribution. (x)+ = x for x > 0 and 0 otherwise.
Matrices and vectors (both deterministic and random) are
denoted by uppercase and lowercase, respectively, boldface
letters. The element of a matrix X in the nth row and
mth column and the nth element of a vector x are denoted
as [X]n,m and [x]n, respectively. λi(X), λmin(X), and
λmax(X) stand for the ith, the minimum, and the maximum
eigenvalue of a matrix X, respectively. ‖x‖ denotes the `2-
norm of the vector x. <z and =z designate the real and imag-
inary part of z ∈ C, respectively. C+ , {z ∈ C : =z > 0}.
For any n, m ∈ N, m ≥ n, [n : m] denotes the natural
numbers {n, n + 1, . . . ,m}.

II. CHANNEL AND SIGNAL MODEL

A. General Assumptions

We consider an interference relay network (see Fig. 1)
consisting of K + 2M single-antenna terminals with
M designated source-destination terminal pairs {Sm,Dm}
(m ∈ [1 :M ]) and K relays Rk (k ∈ [1 :K]). We assume
that no direct link between the individual source-destination
terminal pairs exists (e.g., caused by large separation). Trans-
mission takes place in half-duplex fashion (the terminals
cannot transmit and receive simultaneously) in two hops
(a.k.a. two-hop relaying) over two separate time slots. In the
first time slot, the source terminals simultaneously broadcast
their information to all the relay terminals (i.e., each relay
terminal receives a superposition of all source signals). After
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Fig. 1. Two-hop wireless relay network setup.

processing the received signals, the relay terminals simulta-
neously broadcast the processed data to all the destination
terminals during the second time slot. Our setup can be
considered as an interference channel [5] with dedicated
relays, hence the terminology interference relay network.

B. Channel and Signal Model

Throughout the paper, frequency-flat fading over the band-
width of interest as well as perfectly synchronized transmis-
sion and reception between the terminals is assumed. The
input-output (I-O) relation for the link between the source
terminals and the relay terminals during the first time slot is
given by

r = Hs + z (1)

where r = [r1, r2, . . . , rK ]T with rk denoting the signal re-
ceived at the kth relay terminal, H ∈ CK×M with [H]k,m =
hk,m (k ∈ [1 :K], m ∈ [1 :M ]) where hk,m denotes the i.i.d.
complex-valued zero-mean channel gains with variance one
corresponding to the Sm → Rk links, s = [s1, s2, . . . , sM ]T

where sm is the zero-mean Gaussian signal transmitted
by Sm and the vector s is i.i.d. temporally and spatially
(across source terminals). Finally, z = [z1, z2, . . . , zK ]T

where zk ∼ CN (0, σ2) is temporally and spatially (across
relay terminals) white noise. The kth relay terminal simply
scales its received signal rk to produce the output signal tk.
The collection of output signals tk, organized in the vector
t = [t1, t2, . . . , tK ]T , is then broadcast to the destination
terminals during the second time slot, while the source ter-
minals remain silent. The mth destination terminal receives
the signal ym with y = [y1, y2, . . . , yM ]T given by

y = Ft + w (2)

where F ∈ CM×K with [F]m,k = fm,k

(m ∈ [1 :M ], k ∈ [1 :K]) where fm,k denotes the
i.i.d. complex-valued zero-mean channel gains with
variance one corresponding to the Rk → Dm links, and
w = [w1, w2, . . . , wM ]T with wm ∼ CN (0, σ2) being
temporally and spatially (across destination terminals)
white noise. We impose a per-source-terminal power
constraint E

[∣∣sm

∣∣2] ≤ 1/M (m ∈ [1 :M ]), which
results in the total transmit power trivially satisfying the
constraint E

[
‖s‖2

]
≤ 1. Furthermore, we impose a per-relay-

terminal power constraint E
[∣∣tk∣∣2] ≤ Prel/K (k ∈ [1 :K])

by setting tk =
√

Prel/((1 + σ2)K) rk; this results trivially
in the total power transmitted by the relay terminals
satisfying E

[
‖t‖2

]
≤ Prel.

Throughout the paper, we assume that the source and
relay terminals do not have CSI and the destination terminals
perform joint decoding and have access to the realizations
of H and F. In fact, as the analysis below shows, knowledge
of FH and F is sufficient.

We conclude by noting that the entries in H and F were
assumed to all have the same variance, which implies that our
signal model does not account for pathloss. This assumption
is conceptual as the proof technique used to derive the main
result of the paper does not seem to extend to the case of
general (finite) variances of the entries in H and F. On the
other hand, we do not require H and F to have Gaussian
entries.

III. ASYMPTOTIC NETWORK CAPACITY

The overall I-O relation is obtained by inserting (1) into (2)
and reads

y =
d√
K

FHs +
d√
K

Fz + w (3)

where d =
√

Prel/(1 + σ2). Based on the I-O rela-
tion (3), we shall next study the behavior of I(y; s |FH,F)
when M,K →∞ with K/M → β. We start by noting that

I(y; s |FH,F) =

= log det

(
I +

d2

σ2MK
HHFH

(
d2

K
FFH + I

)−1

FH

)
.

Since the destination terminals perform joint decoding, the
ergodic capacity per source-destination terminal pair is given
by1

CAF =
1
2

E

[
1
M

K∑
k=1

log
(

1 +
1
σ2

λk

(
1
M

HHHT
))]

(4)

where

T ,
d2

K
FH

(
I +

d2

K
FFH

)−1

F

and the factor 1/2 in (4) results from the fact that data is
transmitted over two time slots.

To compute CAF in the M,K →∞ limit with K/M →
β, we start by analyzing the corresponding asymptotic be-
havior of λk

(
(1/M)HHHT

)
. To this end, we define the

empirical spectral distribution (ESD) of a matrix (random or
deterministic) according to

Definition 1: Let X ∈ CN×N be a Hermitian matrix. The
ESD of X is defined as

FN
X (x) ,

1
N

N∑
n=1

I [λn(X) ≤ x] .

For random X, the quantity FN
X (x) is random as well, i.e.,

it is a RV for each x. In the following, our goal is to prove
the convergence (in the sense defined below), when M,K →

1In the finite-M, K case, we need H and F to be ergodic for (4) to be
well-defined.



∞ with K/M → β and β ∈ (0,∞), of FK
(1/M)HHHT(x)

to a deterministic limit and find the corresponding limiting
eigenvalue distribution.

Definition 2: We say that the ESD FN
X (x) of a random

Hermitian matrix X ∈ CN×N converges a.s. to a determin-
istic limiting function FX(x), when N →∞, if for any ε > 0
there exists an N0 > 0 s.t. ∀N ≥ N0 a.s.

sup
x∈R

∣∣FN
X (x)− FX(x)

∣∣ ≤ ε.

To prove the convergence of FK
(1/M)HHHT(x) to a deter-

ministic limiting function, we start by analyzing FK
T (x).

Lemma 1: For M,K → ∞ with K/M → β, the ESD
FK

T (x) converges a.s. to a nonrandom limiting distribution
FT(x) with corresponding density given by2

fT(x) =

=

√
(1 + γ1)(1 + γ2)
2πd2x(1− x)2

√(
γ2

1 + γ2
− x

)+(
x− γ1

1 + γ1

)+

+
[
1− 1

β

]+
δ(x) (5)

where γ1 , d2(1− 1/
√

β)2 and γ2 , d2(1 + 1/
√

β)2.
Proof: We start with the singular value decomposition

d√
K

F = UΣV

where the columns of U ∈ CM,M are the eigenvec-
tors of the matrix (d2/K)FFH , the columns of VH ∈
CK,K are the eigenvectors of (d2/K)FHF, and the matrix
Σ ∈ RM,K contains R = min(M,K) nonzero entries
Σ11,Σ22, . . . ,ΣRR, which are the positive square roots of
the nonzero eigenvalues of the matrix (d2/K)FFH . Defining
Λ , ΣΣH ∈ RM,M , we have

T = VHΣH (I + Λ)−1 ΣV.

By inspection, it follows that

FK
ΣH(I+Λ)−1Σ

(x) =
M

K
FM

Λ

(
x

1− x

)
+
(

1− M

K

)
u(x).

(6)
As FM

Λ (x) = FM
(d2/K)FFH (x), by the Marčenko-Pastur

law (see Theorem 2 in Appendix A), we conclude that
FM

Λ (x) converges a.s. to a limiting nonrandom distribution
FΛ(x) with corresponding density

fΛ(x) =
β

2πxd2

√
(γ2 − x)+ (x− γ1)

++[1−β]+δ(x). (7)

From (6) we can, therefore, conclude that FK
ΣH(I+Λ)−1Σ

(x)
converges a.s. to a nonrandom limit given by

FΣH(I+Λ)−1Σ(x) =
1
β

FΛ

(
x

1− x

)
+
(

1− 1
β

)
u(x). (8)

2Note that (5) implies that fT(x) is compactly supported in the inter-
val [γ1/(1 + γ1), γ2/(1 + γ2)] .

Taking the derivative w.r.t. x on both sides of (8), the density
corresponding to FΣH(I+Λ)−1Σ(x) is obtained as

fΣH(I+Λ)−1Σ(x) =

=
1
β

fΛ

(
x

1− x

)
1

(1− x)2
+
(

1− 1
β

)
δ(x). (9)

We obtain the final result in (5) by noting that fT(x) =
fΣH(I+Λ)−1Σ(x) because of the unitarity of V and by in-
serting (7) into (9) and carrying out straightforward algebraic
manipulations.

Based on Lemma 1, we can now apply Theorem 1
(Appendix A) to conclude that FK

(1/M)HHHT(x) converges
a.s. to a deterministic function F(1/M)HHHT(x) as M,K →
∞ with K/M → β. The corresponding limiting density
f(1/M)HHHT(x) is obtained by applying the Stieltjes inver-
sion formula (21) to the solution of the fixed-point equation

G(z) =
∫ ∞

−∞

fT(x)dx

x(1− β − βzG(z))− z︸ ︷︷ ︸
I

, z ∈ C+ (10)

in the set{
G(z) ∈ C

∣∣−(1− β)/z + βG(z) ∈ C+
}

, z ∈ C+ (11)

where we used the symbol G(z) to denote the Stieltjes
transform GF(1/M)HHHT

(z). In the following, for brevity, we
write G instead of G(z). To solve (10), we first compute the
integral I on the right-hand side (RHS) of (10). We substitute
fT(x) from (5) into (10) and define

η1 ,
γ1

1 + γ1
, η2 ,

γ2

1 + γ2
, ρ ,

√
(1 + γ1)(1 + γ2)

2πd2

to obtain

I = −1
z

[
1− 1

β

]+
+

1
z

∫ η2

η1

ρ
√

(η2 − x) (x− η1) dx

x(1− x)2
(
x
(

1−β
z − βG

)
− 1
)

︸ ︷︷ ︸
Î

. (12)

The integral Î is computed in Appendix B. Employing the
notation introduced in Appendix B, we can finally write the
fixed point equation (10) as

Gz = −
[
1− 1

β

]+
+ χA1Î1 + χA2Î2 + χA3Î3 + χA4Î4.

(13)
It is tedious, but straightforward, to show that for any β > 0

−
[
1− 1

β

]+
+ χA1Î1 = −β − 1

2β

so that (13) can be written as

Gz +
β − 1
2β

− χA2Î2 − χA3Î3 = χA4Î4. (14)

Next, multiplying (14) by 2d2β(Gβz+z+β−1)2, squaring
both sides, introducing the auxiliary variable

Ĝ , −1− β

z
+ βG



we obtain after straightforward, but tedious, manipulations
that Ĝ must satisfy the following quartic equation

Ĝ4 + a3Ĝ
3 + a2Ĝ

2 + a1Ĝ + a0 = 0 (15)

with the coefficients

a3 =
1
z
(2z − β + 1) a2 =

1
z

(
z − β + 3− β

d2

)
a1 =

1
z2

(
2z − β + 1− β

d2

)
a0 =

1
z2

.

The quartic equation (15) can be solved analytically. The
resulting expressions are, however, very lengthy, do not lead
to interesting insights, and will therefore be omitted. It is
important to note, however, that (15) has two pairs of com-
plex conjugate roots. The solutions of (15) will henceforth be
denoted as Ĝ1, Ĝ

∗
1, Ĝ2, and Ĝ∗2. We recall that our goal is to

find the unique solution G of the fixed point equation (10)
s.t. Ĝ = −(1 − β)/z + βG ∈ C+, ∀z ∈ C+. Therefore,
in each point z ∈ C+ we can immediately eliminate
the two solutions (out of the four) that have a negative
imaginary part. In practice, this can be done conveniently
by constructing the functions Ĝ′1 , <Ĝ1 + j

∣∣=Ĝ1

∣∣ and
Ĝ′2 , <Ĝ2 + j

∣∣=Ĝ2

∣∣, which can be computed analytically,
satisfy (15), and are in C+ for any z ∈ C+. Next, note
that (14) has a unique solution in the set (11), which is also
the unique solution of (10). We can obtain this solution G(z),
z ∈ C+, by substituting G1 = (1/β)(Ĝ′1 − (β − 1)/z)
and G2 = (1/β)(Ĝ′2 − (β − 1)/z) into (14) and checking
which of the two satisfies the equation. Unfortunately, it
seems that this verification cannot be formalized in the sense
of identifying the unique solution of (14) in analytic form.
The primary reason for this is that to check algebraically
if G1 or G2 satisfy (14), we have to perform a noninvertible
transformation (squaring) of (14), which doubles the number
of solutions of this equation, and results in G1 and G2 both
satisfying the resulting equation. The second reason is that,
depending on the values of the parameters β > 0, d > 0,
the correct solution is either G1 or G2, and the dependence
between G1, G2, β, and d has a complicated structure.
Starting from the analytical expressions for G1 and G2, we
can identify, however, for any fixed β > 0, d > 0, the density
function f(1/M)HHHT(x) = (1/π) limy→0+ =[G(x + jy)]
corresponding to the unique solution of (14) [and hence
of (10)] numerically. This is accomplished as follows. We
know that, for given x, limy→0+ = [G(x + jy)] is either
equal to

L1(x) , lim
y→0+

= [G1(x + jy)]

or
L2(x) , lim

y→0+
= [G2(x + jy)] .

Even though the functions L1(x) and L2(x) can be com-
puted analytically (with the resulting expressions being very
lengthy and involved), it seems that for any fixed x > 0 the
correct choice between the values L1(x) and L2(x) can only
be made numerically. The following algorithm constitutes
one possibility to solve this problem.

Algorithm—Choice of the Limit
Input: x > 0

1) Choose a small enough y > 0
2) Substitute G1(x + jy) and G2(x + jy)

into (14)
3) If G1(x + jy) satisfies (14), then

return L1(x)
otherwise

return L2(x)

As any other numerical procedure, this algorithm includes
a heuristic element. The following comments are therefore
in order.
• In Step 1, the choice of y cannot be formalized in the

sense of giving an indication of how small y has to be
as a function of β and d. On the one hand, y has to
be strictly greater than zero, because (14), in general,
holds in C+ only and does not need to hold neither
for G1(x+j0) nor for G2(x+j0). On the other hand, y
should be small enough for G1(x + jy) to be close
to L1(x) and G2(x + jy) to be close to L2(x). The
correctness of the output of the algorithm is justified by
the fact that G(z) is analytic in C+ (see Definition 3).

• In Step 3 the check whether G1(x + jy) satisfies (14)
is performed numerically. Therefore, rounding errors
will arise. It turns out, however, that in practice, un-
less

∣∣L1(x)−L2(x)
∣∣ is very small (in this case it does

not matter which of the two values we choose), the
solution of (14) yields a clear indication whether G1(x+
jy) or G2(x + jy) is the correct choice.

• To compute the density f(1/M)HHHT(x) using the pro-
posed algorithm, we need to run Steps 1–3 for every x.
It will be proved below that f(1/M)HHHT(x) is always
compactly supported and bounds for its support will
be given in analytic form (as a function of β and d).
Since the algorithm consists of very basic arithmetic
operations only, it is very fast and can easily be run on a
dense grid inside the support region of f(1/M)HHHT(x).

As an example, for β = 1/2 and d = 1, Fig. 2(a)
shows the density f(1/M)HHHT(x) obtained by the algorithm
formulated above along with the histogram of the same
density obtained through Monte-Carlo simulation. We can
see that the two curves match very closely and that our
method allows to obtain a much more refined picture of the
limiting density. Fig. 2(b) shows f(1/M)HHHT(x) for β = 2,
1, 1/2 and d = 1 obtained through our algorithm.

The final step in computing the asymptotic capacity of
the AF relay network is to take the limit K, M → ∞ with
K/M → β in (4) and to evaluate the resulting integral

Cβ
AF ,

β

2

∫ ∞

0

log
(
1 +

x

σ2

)
f(1/M)HHHT(x) dx (16)

numerically. The evaluation of (16) is drastically simplified
by taking into account that f(1/M)HHHT(x) is compactly
supported. The corresponding interval boundaries (or, more
specifically, bounds thereon) can be computed analytically
as a function of β and d. We start by noting that the
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Fig. 2. Limiting density f(1/M)HHHT(x) (a) for β = 1/2 and d = 1
along with its histogram (Monte-Carlo) and (b) for β = 2, 1, 1/2 and
d = 1.

second part of Theorem 2 in Appendix A implies (under
the additional assumption that the entries of H have finite
fourth moments) that a.s. limM→∞ λmax

(
(1/M)HHH

)
=

(1 +
√

β)2. From (9) and Theorem 2, it follows that a.s.
λmax(T) = d2(1 +

√
β)2/(β + d2(1 +

√
β)2). For any real-

ization of H and T and any M,K, by the submultiplicativity
of the spectral norm, we have

λmax

(
(1/M)HHHT

)
≤ λmax

(
(1/M)HHH

)
λmax(T)

which implies that for M,K →∞ with K/M → β a.s.

λmax

(
(1/M)HHHT

)
≤ d2(1 +

√
β)4

β + d2(1 +
√

β)2
, xmax.

We can thus conclude that f(1/M)HHHT(x) is compactly
supported on the interval3 [0, xmax]. Consequently, the inte-
gral in (16) becomes

Cβ
AF =

β

2

∫ xmax

0

log
(
1 +

x

σ2

)
f(1/M)HHHT(x) dx

which can be computed numerically, using any standard
method for numerical integration and employing the algo-
rithm described above to evaluate f(1/M)HHHT(x) at the

3The actual supporting interval of f(1/M)HHHT(x) may, in fact, be
smaller.

0.5 1 1.5 2 2.5 3 3.5 4

0.5

1

1.5

2

2.5

β

ca
pa

cit
y 

[b
ps

/H
z]

C
β
AF

C
∞

AF

Fig. 3. Capacity Cβ
AF as a function of β for d = 1 and σ2 = 0.01.

required grid points. Using this procedure, we computed Cβ
AF

as a function of β for d = 1 with the result depicted in
Fig. 3. We can see that for β < 1 (i.e., K < M ), Cβ

AF

increases very quickly with β, which is due to the fact that
the corresponding effective MIMO channel matrix (i.e., the
matrix between the Sm and the Dm) is building up rank and
hence spatial multiplexing gain. For β > 1 (i.e., K > M ),
when the effective MIMO channel matrix is already full rank
with high probability, the curve flattens out and for β →∞,
the capacity Cβ

AF seems to converge to a finite value. In the
next section, we prove that Cβ

AF indeed converges to a finite
limit as β →∞. This result has an interesting interpretation
as it allows to relate the AF relay network to a point-to-point
MIMO channel.

IV. CONVERGENCE TO POINT-TO-POINT MIMO
CHANNEL

In [1], it was shown that for finite M , as K → ∞,
the two-hop AF relay network capacity converges to half
the capacity of a point-to-point MIMO link; the factor 1/2
penalty comes from the fact that communication takes place
over two time slots. In the following, we demonstrate that
the result in [1] can be generalized to the M,K →∞ case.
More specifically, we show that for β → ∞ the asymptotic
(M,K → ∞) capacity of the two-hop AF relay network is
equal to half the asymptotic (M →∞) capacity of a point-
to-point MIMO channel with M transmit and M receive
antennas. We start by dividing (15) by β and taking the limit4

β →∞, which yields the quadratic equation

zĜ2 + z

(
1 +

1
d2

)
Ĝ +

(
1 +

1
d2

)
= 0. (17)

The two solutions of (17) are given by

Ĝ1,2(z) =
−z
(
1 + 1

d2

)
±
√

z2
(
1 + 1

d2

)2 − 4z
(
1 + 1

d2

)
2z

.

(18)

4It is important that we take the limit M, K →∞ with K/M → β first
and afterwards let β →∞.



Applying the Stieltjes inversion formula (21) to (18) and
choosing the solution that yields a positive density function,
we obtain

βf(1/M)HHHT(x) =

=
1
π

lim
y→0+

= [βG(x + jy)]

=
1
π

lim
y→0+

=
[
Ĝ(x + jy)

]
=

1
2πx

√√√√[4x

(
1 +

1
d2

)
− x2

(
1 +

1
d2

)2
]+

.

(19)

Inserting (19) into (16) and changing the integration variable
according to u , x

(
1 + 1/d2

)
, we find that Cβ

AF

β→∞−−−−→
C∞AF, where

C∞AF ,
1
4π

∫ 4

0

√
4
u
− 1 log

(
1 +

d2

(d2 + 1)σ2
u

)
du. (20)

Comparing (20) with [6, Eq. (13)], it follows that for β →∞
the asymptotic M,K → ∞ with K/M → β per source-
destination terminal pair capacity in the two-hop AF relay
network is equal to half the asymptotic (M →∞) per-
antenna capacity in a point-to-point MIMO link with M
transmit and M receive antennas, provided the SNR in the
relay case is defined as SNR , d2/

(
(d2 + 1)σ2

)
. For M

and K large, it is easy to verify that this choice corresponds
to the SNR at each destination terminal in the AF relay
network. In this sense, we can conclude that for β → ∞
the AF relay network “converges” to a point-to-point MIMO
link with the same received SNR.

V. CONCLUSION

For a two-hop AF relay network with joint decoding
at the destination terminals, we computed the asymptotic
(in M and K with K/M → β fixed) network capacity
using tools from random matrix theory. To the best of our
knowledge, this is the first application of random matrix
theory to characterize the capacity behavior of large fading
networks. We furthermore demonstrated that for β →∞ the
relay network converges to a point-to-point MIMO link. This
generalizes the finite-M result in [1] and shows that the use
of relays as active scatterers can recover spatial multiplexing
gain in poor scattering environments even if the number of
transmit and receive antennas grows large. More importantly,
our result shows that linear increase in the number of relays
as a function of transmit-receive antenna pairs is sufficient
for this to happen.

APPENDIX A
SOME ESSENTIALS FROM RANDOM MATRIX THEORY

In this section, we briefly summarize the basic definitions
and results from random matrix theory used in this paper.
An excellent tutorial on this subject is [3].

Definition 3 (Stieltjes transform): Let F (x) be a distribu-
tion function with density f(x). The analytic function

GF (z) ,
∫

f(x)
x− z

dx, z ∈ C+

is called the Stieltjes transform of F (x).
Lemma 2 (Inversion formula): Let GF (z) be the Stieltjes

transform of a distribution function F (x). The corresponding
density function can be obtained as

f(x) =
1
π

lim
y→0+

= [GF (x + jy)] . (21)

Theorem 1 (Silverstein [2]): Define the following quanti-
ties on a common probability space:
• The random matrix X ∈ CN×N ′

has i.i.d. zero-mean
entries with variance one.

• The random matrix Y ∈ CN×N is Hermitian nonneg-
ative definite with FN

Y (x), for N →∞, converging on
[0,∞) a.s. to a nonrandom distribution function FY(x)
with corresponding density fY(x).

Assume that the matrices X and Y are statistically in-
dependent. Then, for N,N ′ → ∞ with N/N ′ → β,
FN

(1/N ′)XXHY(x) a.s.−−→ F(1/N ′)XXHY(x) with its Stieltjes
transform GF(1/N′)XXHY

(z) satisfying (z ∈ C+)

GF(1/N′)XXHY
(z) =

=
∫ ∞

−∞

fY(x)dx

x(1− β − βz GF(1/N′)XXHY
(z))− z

.

The solution of this fixed-point equation is unique in the set{
GF(1/N′)XXHY

∈ C
∣∣∣∣−1− β

z
+ β GF(1/N′)XXHY

∈ C+

}
.

We shall furthermore use the Marčenko-Pastur law as
stated in [7].

Theorem 2 (Marčenko-Pastur [8]): Assume that the ma-
trix X ∈ CN×N ′

has i.i.d. zero-mean entries with variance
d2. Then, for N,N ′ → ∞ with N ′/N → β, the ESD
of (1/N ′)XXH converges a.s. to a limiting distribution
function with density

f(1/N ′)XXH (x) =

=
β

2πxd2

√
(γ2 − x)+ (x− γ1)

+ + [1− β]+δ(x)

where γ1 = d2(1− 1/
√

β)2 and γ2 = d2(1 + 1/
√

β)2.
Under the same assumptions as in the first statement, if, in

addition, the entries of X have finite fourth moments, then
a.s.

lim
N ′→∞

λmin

(
1

N ′XXH

)
= γ1

lim
N ′→∞

λmax

(
1

N ′XXH

)
= γ2.

APPENDIX B
COMPUTATION OF THE INTEGRAL Î IN (12)

In the following, we detail the computation of the integral

Î , ρ

∫ η2

η1

√
(η2 − x) (x− η1) dx

x(1− x)2
(
x
(

1−β
z − βG

)
− 1
)



on the RHS of (12). With the change of variables

t =
√

x− η1

η2 − x

and the notation

µ1 , 1− η1

µ2 , 1− η2

ν1 , η1

(
1− β

z
− βG

)
− 1

ν2 , η2

(
1− β

z
− βG

)
− 1

the integral Î can be written as

Î = 2(η2 − η1)2ρ
∫ ∞

0

t2(t2 + 1)dt

(η2t2 + η1)(µ2t2 + µ1)2(ν2t2 + ν1)
.

To simplify further, we introduce the notation

κ1 , −η1

η2
, κ2 , −µ1

µ2
, κ3 , −ν1

ν2
, χ ,

2(η2 − η1)2

η2 µ2
2 ν2

ρ

so that

Î = χ

∫ ∞

0

t2(t2 + 1)dt

(t2 − κ1)(t2 − κ2)2(t2 − κ3)
. (22)

Upon partial fraction expansion of the integrand in (22), we
obtain

Î = χ(A1Î1 + A2Î2 + A3Î3 + A4Î4)

where

Î1 ,
∫ ∞

0

dt

t2 − κ1
Î2 ,

∫ ∞

0

dt

(t2 − κ2)2

Î3 ,
∫ ∞

0

dt

t2 − κ2
Î4 ,

∫ ∞

0

dt

t2 − κ3
(23)

with

A1 =
κ1(κ1 + 1)

(κ1 − κ2)2(κ1 − κ3)
(24)

A2 =
κ2(κ2 + 1)

(κ2 − κ1)(κ2 − κ3)
(25)

A3 =
−κ2

2 − κ1κ
2
2 + κ1κ3 + 2κ1κ2κ3 − κ2

2κ3

(κ2 − κ1)2(κ2 − κ3)2
(26)

A4 =
κ3(κ3 + 1)

(κ3 − κ1)(κ3 − κ2)2
. (27)

The integrals in (23) can be evaluated as follows

Î1 =
1√
−κ1

arctan
t√
−κ1

∣∣∣∣∞
0

=
π

2
√
−κ1

(28)

Î2 = − t

2κ2(t2 − κ2)

∣∣∣∣∞
0

− 1
2κ2

√
−κ2

arctan
t√
−κ2

∣∣∣∣∞
0

=

= − π

4κ2
√
−κ2

(29)

Î3 =
1√
−κ2

arctan
t√
−κ2

∣∣∣∣∞
0

=
π

2
√
−κ2

(30)

Î4 =
1√
−κ3

arctan
t√
−κ3

∣∣∣∣∞
0

=
π

2
√
−κ3

. (31)

The quantity κ3 is complex-valued, and the arctan and
square root in (30) are understood as the principal values
of these functions in C as defined in [9].

Finally, by inspection, combining (28)–(31) with (24)–
(27) and resubstituting the values of the parame-
ters κ1, κ2, κ3, χ, ρ, µ1, µ2, η1, η2, ν1, ν2, γ1, and γ2, after
straightforward but tedious simplifications, we find

χA1Î1 =

(√
β + 1

) ∣∣√β − 1
∣∣

2β

χA2Î2 = − z√
β(Gβz + z + β − 1)

χA3Î3 =
−z
(√

β − 1
)2

2β(Gβz + z + β − 1)
+

z(Gβz + β − 1)
2d2(Gβz + z + β − 1)2

χA4Î4 = −
(Gβz + β − 1)

√
d2(Gβz+z+β−1)(√β−1)2

+zβ

d2(Gβz+z+β−1)(√β+1)2
+zβ

2d2β(Gβz + z + β − 1)2
×

×
(

d2(Gβz + z + β − 1)
(√

β + 1
)2

+ zβ

)
.
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[1] H. Bölcskei, R. U. Nabar, Ö. Oyman, and A. J. Paulraj, “Capacity
scaling laws in MIMO relay networks,” IEEE Trans. Wireless Commun.,
vol. 5, no. 6, pp. 1433–1444, Jun. 2006.

[2] J. W. Silverstein, “Strong covergence of the empirical distribution of
eigenvalues of large dimensional random matrices,” J. Multivariate
Anal., vol. 55, pp. 331–339, Nov. 1995.
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