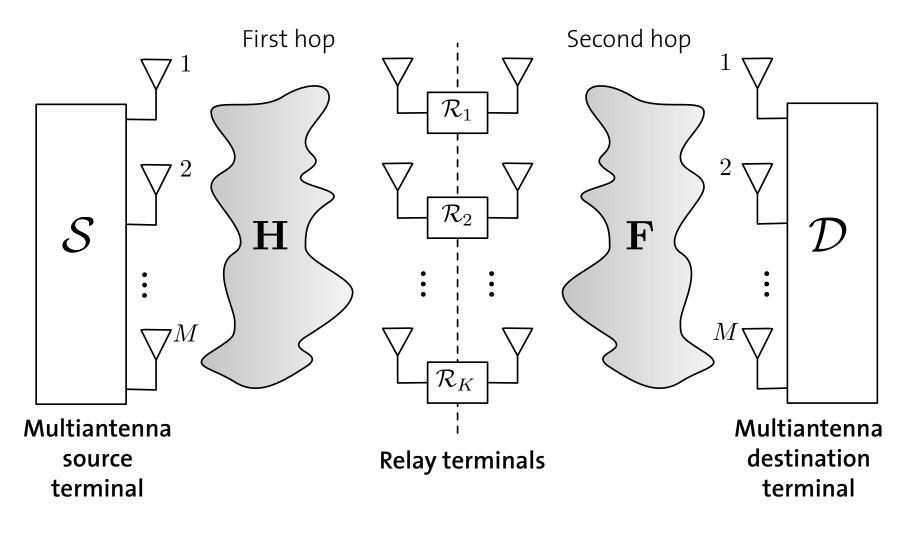
Capacity of Large Amplify and Forward Relay Networks

Veniamin I. Morgenshtern and Helmut Bölcskei ETH Zürich

IEEE Communication Theory Workshop 2006

May 22, 2006

Amplify and Forward (AF) Relay Network



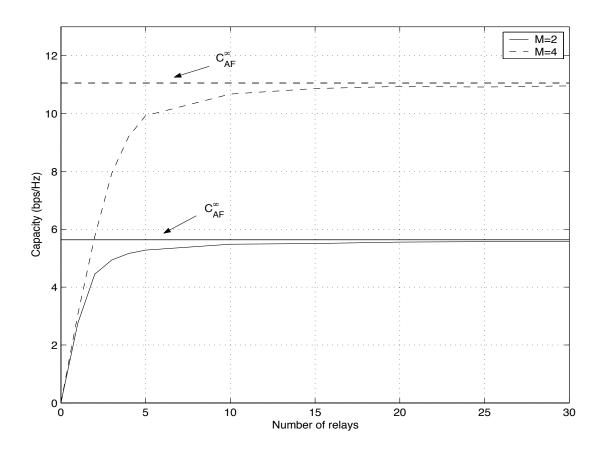
Large K Capacity of AF Relay Network for Finite M

- Total power constraint across relays
- Receiver knows composite MIMO channel
- For M fixed, in the limit $K \to \infty$, **AF relay network approaches point-to-point MIMO channel** with capacity [HB et. al., 2004]

$$C_{AF}^{\infty} = \frac{1}{2} \mathbb{E}_{\mathbf{H}} \left[\log \det \left(\mathbf{I} + \text{SNR } \mathbf{H}_w \mathbf{H}_w^H \right) \right] = \frac{M}{2} \log(\text{SNR}) + O(1)$$

 Relays can help to restore the rank of poor-scattering channels (active (but dumb) scatterers)

Convergence of Capacity



Capacity vs. number of relays for the AF relay network

Generalization to $M \to \infty$

Assumptions

- Overall I-O relation: $\mathbf{y} = d\mathbf{F}\mathbf{H}\mathbf{s} + d\mathbf{F}\mathbf{n}_r + \mathbf{n}_d$
- Fixed receive SNR at each relay and at each destination node
- $\mathbf{H} \in \mathbb{C}^{K \times M}, \mathbf{F} \in \mathbb{C}^{M \times K}$
 - ${f H}$... i.i.d. entries with mean 0 and variance 1/M
 - ${f F}$... i.i.d. entries with mean 0 and variance 1/K
- $\mathbf{n}_r \in \mathbb{C}^{K \times 1}, \mathbf{n}_d \in \mathbb{C}^{M \times 1}$
 - \mathbf{n}_r ... i.i.d. $\mathcal{CN}(0,\sigma_n^2)$ noise at relays
 - \mathbf{n}_d ... i.i.d. $\mathcal{CN}(0,\sigma_n^2)$ noise at destination terminal
- ullet Gaussian codebook, receiver knows ${f FH}$ and ${f F}$

Capacity

• Capacity of the effective MIMO channel is given by

$$C = \frac{1}{2} \mathbb{E} \left[\log \det \left(\mathbf{I} + \frac{d^2}{\sigma_n^2} \mathbf{H}^H \mathbf{F}^H \left(\mathbf{I} + d^2 \mathbf{F} \mathbf{F}^H \right)^{-1} \mathbf{F} \mathbf{H} \right) \right]$$
$$= \frac{1}{2} \mathbb{E} \left[\sum_{i=1}^K \log \left(1 + \frac{1}{\sigma_n^2} \lambda_i \right) \right]$$

with

$$\lambda_i = \lambda_i (\mathbf{H}\mathbf{H}^H\mathbf{T})$$
 and $\mathbf{T} = \mathbf{F}^H \left(rac{1}{d^2}\mathbf{I} + \mathbf{F}\mathbf{F}^H
ight)^{-1}\mathbf{F}$

• Need to study large M, K-behavior of $\lambda_i(\mathbf{H}\mathbf{H}^H\mathbf{T})$

Brief Review of Large Random Matrix Theory

ullet For an M imes M random Hermitian matrix ${f X}$ define the *empirical* eigenvalue distribution function (EEDF) of ${f X}$ as

$$F_{\mathbf{X}}^{M}(x) = \frac{1}{M} \sum_{i=1}^{M} 1 \{ \lambda_{i}(\mathbf{X}) \le x \}$$

• From Large Random Matrix Theory [Wigner, Silverstein, Bai, ...]: Under certain assumptions on \mathbf{X} , when $M \to \infty$, $F^M_{\mathbf{X}}(x)$ converges almost surely to a deterministic limit, i.e.,

$$F_{\mathbf{X}}^{M}(x) \xrightarrow{\mathrm{a.s.}} F_{\mathbf{X}}(x)$$

where $F_{\mathbf{X}}(x)$ is the asymptotic EEDF

Proof Program (for simplicity of exposition K=M)

Goal: Prove convergence of $F^M_{{f HH}^H{f T}}(x)$ and compute the corresponding asymptotic PDF $f_{{f HH}^H{f T}}(x)$

- 1. [Theorem (Silverstein, 1995)]: If $F^M_{\mathbf{T}}(x) \xrightarrow{\mathrm{a.s.}} F_{\mathbf{T}}(x)$, then $F^M_{\mathbf{H}\mathbf{H}^H\mathbf{T}}(x) \xrightarrow{\mathrm{a.s.}} F_{\mathbf{H}\mathbf{H}^H\mathbf{T}}(x)$ with the Stieltjes transform $m_{\mathbf{H}\mathbf{H}^H\mathbf{T}}(z)$ given by the unique solution of a fixed-point equation (depends on $F_{\mathbf{T}}(x)$)
- 2. Solve the fixed-point equation and find $m_{\mathbf{H}\mathbf{H}^H\mathbf{T}}(z)$
- 3. Use the Stieltjes inversion formula to compute $f_{\mathbf{H}\mathbf{H}^H\mathbf{T}}(x)$
- 4. Asymptotic per antenna capacity given by

$$\frac{C}{M} = \frac{1}{2} \int_0^\infty \log\left(1 + \frac{1}{\sigma_n^2}x\right) f_{\mathbf{H}\mathbf{H}^H\mathbf{T}}(x) \, dx$$

Computing $f_{\mathbf{T}}(x)$

- ullet Singular value decomposition ${f F}={f U}{f \Sigma}{f V}^H$
- T can be written as

$$\mathbf{T} = \mathbf{F}^{H} \left(\frac{1}{d^{2}} \mathbf{I} + \mathbf{F} \mathbf{F}^{H} \right)^{-1} \mathbf{F} = \mathbf{V} \operatorname{diag} \left\{ \frac{\lambda_{i}}{1/d^{2} + \lambda_{i}} \right\}_{i=1}^{M} \mathbf{V}^{H}$$

Marčenko (^{a.s.}

 — Marchenko)-Pastur law [Marčenko and Pastur, 1967]
 gives asymptotic PDF of eigenvalues of

$$\mathbf{F}^H \mathbf{F} = \mathbf{V} \operatorname{diag}\{\lambda_i\}_{i=1}^M \mathbf{V}^H$$

• ${f F}^H {f F}$ and ${f T}$ are related through a bijection \Rightarrow

$$f_{\mathbf{T}}(x) = \frac{1}{d^2(1-x)^2} f_{\mathbf{F}^H\mathbf{F}} \left(\frac{x}{d^2(1-x)}\right)$$

Computing $f_{\mathbf{T}}(x)$ (Cont'd)

Lemma 1. [Marčenko-Pastur] If the matrix $\mathbf{F} \in \mathbb{C}^{M,M}$ has i.i.d. entries with mean 0 and variance 1/M, then $F^M_{\mathbf{F}^H\mathbf{F}}(x)$ converges a.s., as $M \to \infty$, to a non-random $F_{\mathbf{F}^H\mathbf{F}}(x)$ with corresponding PDF

$$f_{\mathbf{F}^H\mathbf{F}}(x) = \begin{cases} \frac{1}{2\pi} \sqrt{\frac{4-x}{x}}, & 0 \le x \le 4\\ 0, & \text{otherwise} \end{cases}$$

Lemma 2. Under the same conditions $F_{\mathbf{T}}(x)$ converges a.s., as $M \to \infty$, to a non-random $F_{\mathbf{T}}(x)$ with corresponding PDF

$$f_{\mathbf{T}}(x) = \begin{cases} \frac{1}{2\pi d^2} \frac{1}{(1-x)^2} \sqrt{\frac{4d^2 - (4d^2 + 1)x}{x}}, & 0 \le x \le 4d^2/(1 + 4d^2) \\ 0, & \text{otherwise} \end{cases}$$

Brief Review of Stieltjes Transform

Let F(x) be a distribution function

• Stieltjes transform:

$$m_F(z) := \int \frac{f(x)}{x - z} dx, \quad z \in \mathbb{C}^+ := \{ z \in \mathbb{C} : \Im z > 0 \}$$

Inversion formula:

$$f(x) = \frac{1}{\pi} \lim_{y \to 0^+} \Im [m_F(x+iy)]$$

© ETH, Communication Theory Group

[Silverstein, 1995]

Assume that

- $\mathbf{H} \in \mathbb{C}^{M \times M}$ has i.i.d. elements with mean 0 and variance 1/M
- $\mathbf{T} \in \mathbb{C}^{M \times M}$ is a random Hermitian nonnegative definite matrix, with $F^M_{\mathbf{T}}(x) \xrightarrow{\mathrm{a.s.}} F_{\mathbf{T}}(x)$ on $[0, \infty)$ as $M \to \infty$
- **H** and **T** are independent

Then, $F^M_{{\bf HH}^H{\bf T}}(x) \xrightarrow{{
m a.s.}} F_{{\bf HH}^H{\bf T}}(x)$, as $M \to \infty$, with Stieltjes transform satisfying

$$m_{\mathbf{H}\mathbf{H}^{H}\mathbf{T}}(z) = -\int_{-\infty}^{\infty} \frac{f_{\mathbf{T}}(x)dx}{z\left(x m_{\mathbf{H}\mathbf{H}^{H}\mathbf{T}}(z) + 1\right)}, \ z \in \mathbb{C}^{+}$$

The solution of this equation is unique in \mathbb{C}^+

Putting the Pieces Together

Putting the pieces together, we get

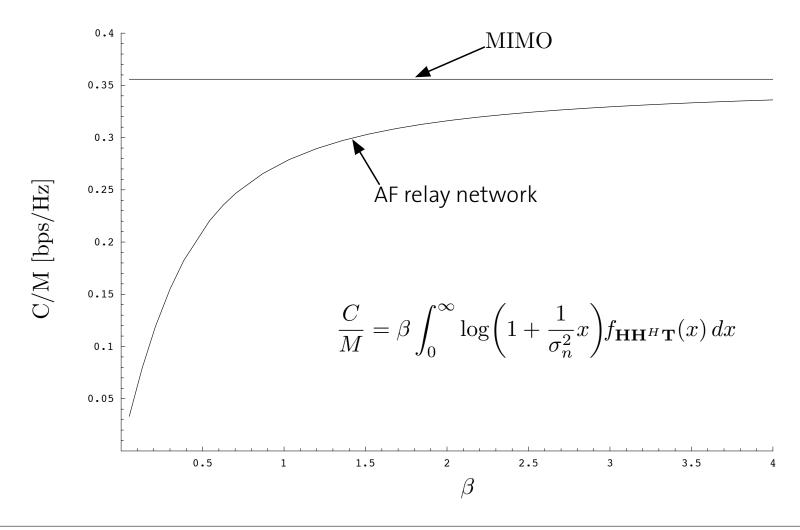
$$m_{\mathbf{H}\mathbf{H}^{H}\mathbf{T}}(z) = -\frac{1}{2\pi d^{2}} \int_{0}^{\frac{4d^{2}}{(4d^{2}+1)}} \frac{\sqrt{4d^{2} - (4d^{2}+1)x}}{(1-x)^{2}\sqrt{x}} \frac{dx}{z \left(x m_{\mathbf{H}\mathbf{H}^{H}\mathbf{T}}(z) + 1\right)}$$

• $\Rightarrow m = m_{\mathbf{H}\mathbf{H}^H\mathbf{T}}(z)$ satisfies the following equation of order 4:

$$d^{2}z^{2}m^{4} + 2d^{2}z^{2}m^{3} + (d^{2}z^{2} + 2d^{2}z - z)m^{2} + (2d^{2}z - 1)m + d^{2}z = 0$$

- Only one of the roots satisfies the initial equation
- \bullet Asymptotic PDF $f_{\mathbf{H}\mathbf{H}^H\mathbf{T}}(x)$ can be computed **analytically** using the Stieltjes inversion formula

Asymptotic Capacity for d=1 as Function of $\beta=K/M$



Eidgenössische Technische Hochschule Zürich

Swiss Federal Institute of Technology Zurich