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Abstract

We study fading interference relay networks where M single-antenna source-
destination terminal pairs communicate concurrently through a set of K relays,
each of which is equipped with N (cooperating) transmit/receive antennas, using
half-duplex two-hop relaying under the two protocols introduced in [1] and [2],
respectively. The main contributions of this paper are:

• For fixed N and M, K → ∞, we establish the impact of cooperation at
the relay level on network capacity scaling. More specifically, it is shown
that asymptotically in M and K cooperation in groups of N relay antenna
elements leads to an N -fold reduction in the total number of relays needed to
achieve a given per source-destination terminal pair capacity.

• We characterize the rate at which the network “crystallizes”, i.e., the individ-
ual single-input single-output source-destination terminal pair links decouple
and the corresponding random (fading) channel gains converge to a determin-
istic limit.

1 Introduction

Capacity scaling in large wireless (relay) networks and code design for cooperative com-
munication has recently attracted significant attention [1–13]. In this paper, we consider
fading interference relay networks, where M single-antenna source-destination terminal
pairs communicate concurrently through half-duplex two-hop relaying over a set of K
relay terminals each of which is equipped with N (cooperating) transmit/receive anten-
nas. Two specific protocols, P1 [1] and P2 [2], have been introduced for this setup for
the N = 1 case. The corresponding per source-destination terminal pair capacity was
shown to scale (for M,K → ∞) as1 [13]

CP1 =
1

2
log

(

1 + Θ

(

K

M3

))

, CP2 =
1

2
log

(

1 + Θ

(

K

M2

))

∗This research was supported by Nokia Research Center Helsinki, Finland.
1The notation Θ(.) is defined in the notations paragraph in this section.



for P1 and P2, respectively. The purpose of this paper is twofold, (i) to study the impact
of cooperation at the relay level on the per source-destination terminal pair capacity
scaling law, and (ii) to perform an outage analysis by characterizing the behavior of the
signal to interference plus noise ratio (SINR) of the individual (fading) source-destination
terminal pair links when M,K → ∞ and N is fixed. Our specific contributions can be
summarized as follows:

• We first formulate (straightforward) modifications of P1 and P2 to take into account
the presence of multiple (cooperating) antennas at the relays2. Based on techniques
developed in [2,13,14], we then establish lower and upper bounds on the per source-
destination terminal pair capacity for N fixed and M,K → ∞. These bounds are
tight up to a constant, which depends on the geometry of the network only, and
make the impact of cooperation at the relay level explicit. In particular, it is
shown that (asymptotically in M and K) cooperation in groups of N relay antenna
elements leads to an N -fold reduction in the total number of relays needed to achieve
a given per source-destination terminal pair capacity. We also state a stronger lower
bound on the per source-destination terminal pair capacity of P1 and P2, which is
valid in the finite M,K case.

• The second contribution of this paper has the flavor of an outage analysis. More
specifically, we analyze the convergence behavior (when M,K → ∞ and N is fixed)
of the individual (random) source-destination terminal pair link SINRs. This result
establishes the rate at which the network “crystallizes”, i.e., the individual source-
destination terminal pair links decouple (in a sense to be made precise in Sections 4
and 5) and the corresponding random SINR values approach deterministic quanti-
ties.

Notation. The superscripts T , H and ∗ stand for transposition, conjugate transpose,
and element-wise conjugation, respectively. |X | is the cardinality of the set X . All
logarithms are to the base 2. E and VAR denote the expectation and variance operator,
respectively. arg(x) stands for the argument of x ∈ C. A circularly symmetric zero-mean
complex Gaussian random variable (RV) is a RV Z = X +j Y ∼ CN (0, σ2), where X and
Y are i.i.d. N (0, σ2/2). δ[k] = 1 for k = 0 and 0 otherwise. For two functions f(x) and
g(x), the notation f(x) = O(g(x)) means that |f(x)/g(x)| remains bounded as x → ∞.
We write g(x) = Θ(f(x)) to denote that f(x) = O(g(x)) and g(x) = O(f(x)).

Organization of the paper. The remainder of this paper is organized as follows. Sec-
tion 2 introduces the general channel and signal model. In Section 3, we describe the
(straightforward) extension of protocols P1 and P2, as described in [13], to the multiple-
antenna relay case. In Section 4, we state our ergodic capacity scaling results for the two
protocols. Our findings on the outage behavior of P1 and P2 are provided in Section 5.
Numerical results are given in Section 6. We conclude in Section 7.

2 Channel and Signal Model

In this section, we present the channel and signal model and additional basic assumptions.
The discussion is general and applies to both protocols under consideration. The specifics
of P1 and P2 are described in Section 3.

2The original proposal of P1 in [1] (for the finite M case) already takes the presence of multiple
(cooperating) antennas at the relays into account.
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Figure 1: Interference relay network with cooperation at the relay level.

2.1 General assumptions

We consider an interference relay network (see Fig. 1) consisting of M designated source-
destination terminal pairs {Sl,Dl} (l = 1, 2, . . . ,M) and K relays Rk (k = 1, 2, . . . , K),
each of which is equipped with N cooperating transmit/receive antennas. Source terminal
Sl intends to communicate solely with destination terminal Dl, a dead-zone of non-zero
radius around each Sl and Dl is free of relay terminals, and no cooperation between ter-
minals (not even between the destination terminals) is allowed. The individual antenna
elements on a given relay terminal are, however, allowed to cooperate. Furthermore, we
assume that no direct link between the source terminals and the destination terminals
exists (e.g., caused by large separation), transmission takes place in half-duplex fashion
(the terminals cannot transmit and receive simultaneously) in two hops (two-hop relay-
ing) over two separate time slots. In the first time slot the source terminals Sl broadcast
their information to all the relay terminals (i.e., each relay terminal receives a super-
position of all source signals). After processing the received signals, the relay terminals
simultaneously broadcast the processed data to all the destination terminals during the
second time slot. Finally, we assume that all terminals are located within a domain of
fixed area (dense network assumption).

2.2 Channel and signal model

Throughout the paper, we assume ergodic frequency-flat fading and perfectly synchro-
nized transmission/reception between the terminals. The input-output relation for the3

Sl → Rk link during the first time slot is given by

rk =
M
∑

l=1

√

Ek,l hk,lsl + nk, k = 1, 2, . . . , K (1)

3A → B signifies communication from terminal A to terminal B.



where the N × 1 vector rk denotes the received signal at the kth relay terminal, Ek,l is
the average energy received at Rk through the Sl → Rk link (having accounted for path
loss and shadowing in the Sl → Rk link), hk,l denotes the corresponding N × 1 complex-
valued channel vector, independent across source and relay terminals (i.e., independent
across l = 1, 2, . . . ,M and k = 1, 2, . . . , K) with i.i.d. CN (0, 1) components, sl is the
temporally i.i.d. CN (0, 1) data signal transmitted by Sl and satisfying E{sls

∗

k} = δ[l−k],
and nk is the N × 1 temporally and spatially (across relay terminals) white noise vector
with i.i.d. CN (0, σ2) elements.

Each relay terminal processes its received signal rk to produce the output signal tk,
which is then broadcast to the destination terminals during the second time slot while
the source terminals are silent. The lth destination terminal receives the signal

yl =
K
∑

k=1

√

Pl,k fT
l,ktk + zl, l = 1, 2, . . . ,M (2)

where Pl,k denotes the average energy received at Dl through the Rk → Dl link (having
accounted for path loss and shadowing in the Rk → Dl link), fT

l,k is the corresponding 1×N
complex-valued channel vector, independent across destination and relay terminals (i.e.,
independent across l = 1, 2, . . . ,M and k = 1, 2, . . . , K) with i.i.d. CN (0, 1) components,
and zl is CN (0, σ2) temporally and spatially (across destination terminals) white noise.
The transmit signal tk is chosen to satisfy the average power constraint E{‖tk‖2} ≤ N .
Note that we impose a power constraint on a per-relay basis rather than a sum power
constraint across relay terminals.

As already mentioned above, throughout the paper, path-loss and shadowing is ac-
counted for through the Ek,l (k = 1, 2, . . . , K; l = 1, 2, . . . ,M) (for the first hop) and the
Pl,k (l = 1, 2, . . . ,M ; k = 1, 2, . . . , K) (for the second hop). We assume that these pa-
rameters, describing the geometry of the network, are deterministic, uniformly bounded
from above (follows from the dead-zone assumption) and below (follows from the dense
network assumption) so that

E ≤ Ek,l ≤ E, P ≤ Pl,k ≤ P , ∀k, l. (3)

Throughout the paper, we assume that the source terminals Sl do not have channel
state information (CSI). The assumptions on CSI at the relays and the destination ter-
minals will be made specific when discussing P1 and P2 in the next section and when
stating our results in Sections 4 and 5.

3 P1 and P2 for Multiple-Antenna Relays

In this section, we briefly formulate (straightforward) modifications of P1 and P2, as
summarized in [13], to take into account the presence of multiple-antenna relays, where
the individual antenna elements on a given relay are allowed to cooperate. As demon-
strated in [13], P1 and P2 trade off the amount of CSI required at the relay terminals
for the number of relay terminals needed (asymptotically in M and K) to obtain a given
per source-destination terminal pair capacity. We shall see that the same conclusion ap-
plies to the multiple-antenna relay versions of P1 and P2. The main focus of this paper
is, however, on the impact of cooperation at the relay level and on the network outage
behavior.



3.1 P1 for multiple-antenna relays

The basic setup was introduced in Section 2. We shall next describe the specifics of P1
for multiple-antenna relays. A more detailed description (for the multiple-antenna relay
case) can be found in [1]. The K relay terminals are partitioned into M subsets Ml

(l = 1, 2, . . . ,M) with |Ml| = K/M . The relays in Ml are assumed to assist the lth
source-destination terminal pair {Sl,Dl}. For simplicity of notation, we introduce the
relay partitioning function p : [1, K] → [1,M ] defined as

p(k) = l ⇔ Rk ∈ Ml.

We assume that the kth relay terminal has perfect knowledge of the phases of the
single-input multiple-output backward channel Sp(k) → Rk given by

h̃k,p(k) =
[

ejarg([hk,p(k)]1) ejarg([hk,p(k)]2) · · · ejarg([hk,p(k)]N)
]T

(4)

and the phases of the corresponding multiple-input single-output forward channel Rk →
Dp(k) given by

f̃T
p(k),k =

[

ejarg([fp(k),k]1) ejarg([fp(k),k]2) · · · ejarg([fp(k),k]N)
]

. (5)

Here [hk,l]i and [fl,k]i denote the ith element of the vector hk,l and fl,k, respectively. The
signal rk received at the kth relay terminal is phase-matched-filtered with respect to
(w.r.t.) the assigned backward channel followed by a normalization so that

uk = τ
(1)
k h̃H

k,p(k) rk (6)

where τ
(1)
k =

(
∑M

l=1 Ek,l + π
4
N(N − 1)Ek,p(k) + Nσ2

)−1/2
ensures E{|uk|2} = 1. Relay

terminal Rk then computes the transmit signal tk by transmit phase-matched-filtering
w.r.t. its assigned forward channel, i.e., by computing

tk = f̃∗p(k),k uk (7)

which obviously satisfies the power constraint E{‖tk‖2} = N . In summary, P1 ensures
that the relays Rk ∈ Ml forward the signal intended for Dl in a “doubly coherent” (w.r.t.
backward and forward channel) fashion whereas the signals transmitted by the source
terminals Sm with m 6= l are forwarded to Dl in a “noncoherent” fashion (i.e., phase
incoherence occurs either on the backward or the forward link or on both links). We
conclude by noting that cooperation in groups of N relay antenna elements is achieved
by phase combining on the backward and forward links of each relay.

3.2 P2 for multiple-antenna relays

The only difference between P1 and P2 is in the processing at the relays. Whereas in P1
the K relay terminals are partitioned into M clusters (of equal size) with each of these
clusters assisting one particular source-destination terminal pair, in P2 each relay assists
all source-destination terminal pairs so that relay partitioning is not needed. In turn P2
requires that each relay knows the phases of all its M backward and M forward vector



channels, i.e., Rk needs knowledge of h̃k,l and f̃l,k, respectively, for l = 1, 2, . . . ,M . Con-
sequently P2 requires significantly more CSI at the relays than P1. The relay processing
stage in P2 computes

tk = τ
(2)
k

(

M
∑

l=1

f̃∗l,kh̃
H
k,l

)

rk

where τ
(2)
k =

(

M
∑M

l=1 Ek,l +
π
4
N(N − 1)

∑M
l=1 Ek,l + MNσ2

)−1/2
ensures that the power

constraint E{‖tk‖2} = N is satisfied. Just like in P1, we have cooperation at the relay
level in groups of N antenna elements.

4 Capacity Scaling Results

In this section, we provide our results on the ergodic capacity scaling behavior of protocols
P1 and P2 described in the previous section. The two main statements are summarized
as follows4,5.

Theorem 1 (Ergodic capacity of P1). Suppose that destination terminal Dl (l =
1, 2, . . . ,M) has perfect knowledge of the mean of the effective channel gain of the Sl → Dl

link, given by (π/4)N2
∑

k:p(k)=l τ
(1)
k

√

Ek,lPl,k. Then, for any ε > 0 there exist M0, K0,
such that for all M ≥ M0, K ≥ K0, the per source-destination terminal pair capacity
achieved by P1 satisfies

1

2
log

(

1 +
π2

16

P E2

P E
2

KN2

M3

)

− ε ≤ CP1 ≤
1

2
log

(

1 +
π2

16

P E
2

P E2

KN2

M3

)

+ ε. (8)

Theorem 2 (Ergodic capacity of P2). Suppose that destination terminal Dl (l =
1, 2, . . . ,M) has perfect knowledge of the mean of the effective channel gain of the Sl → Dl

link, given by (π/4)N2
∑K

k=1 τ
(2)
k

√

Ek,lPl,k. Then, for any ε > 0 there exist M0, K0, such
that for all M ≥ M0, K ≥ K0, the per source-destination terminal pair capacity achieved
by P2 satisfies

1

2
log

(

1 +
π2

16

P E2

P E
2

KN2

M2

)

− ε ≤ CP2 ≤
1

2
log

(

1 +
π2

16

P E
2

P E2

KN2

M2

)

+ ε. (9)

The proofs of Theorems 1 and 2 are lengthy and can be found in [15]. The technique
used to prove the lower bounds in (8) and (9) is identical to the technique used in the
proof of [13, Theorem 1]. The method used to prove the upper bounds in Theorems
1 and 2 is based on the convergence results for the individual link SINRs reported in
Theorems 3 and 4 in the next section.

The results in Theorems 1 and 2 are asymptotic in M and K. For the lower bounds
in (8) and (9) we can, however, state a stronger result which is valid in the finite M and
K case. In particular, we have

CP1 ≥
1

2
log

(

1 +
AP1

BP1

)

(10)

4The dependence on N, E, E, P and P only makes the results in Theorems 1 and 2 uniformly valid
over the source-destination pairs l = 1, 2, . . . , M .

5Strictly speaking, the upper bounds in the form specified in Theorems 1 and 2 hold for K > M2

in P1 and K > M in P2 only. If K < M2 in P1 or K < M in P2, the second term inside the log of the
upper bounds in (8) and (9) still goes to zero for M → ∞, albeit at a different rate which can be shown
to be at least 1/M [15].



where

AP1 =
π2

16
K2N4P E

BP1 = ηP E

(

(

1 − π

4

)2

KMN2 +
(

1 − π

4

) π

2
KMN3

)

+

+ ηP E
(

3KM(M − 1)N2 π

2
KM(M − 1)N2(N − 1) + KM(M − 2)(M − 1)N2

)

+ ηP
(π

4
KMN2(N − 1)σ2 + KM2N2σ2

)

+EM3σ2 +
π

4
EN(N − 1)M2σ2 + NM2σ4

with

η =
ME + π

4
N(N − 1)E + Nσ2

ME + π
4
N(N − 1)E + Nσ2

.

The corresponding result for P2 is given by

CP2 ≥
1

2
log

(

1 +
AP2

BP2

)

(11)

where AP2 = AP1 and BP2 = BP1/M .

Discussion of results. The results in Theorems 1 and 2 can be summarized as6

CP1 =
1

2
log

(

1 + Θ

(

KN2

M3

))

, CP2 =
1

2
log

(

1 + Θ

(

KN2

M2

))

.

Similar to [13], we can conclude that asymptotically in M if K ∝ Mα with α ≥ 3 in P1
and α ≥ 2 in P2 both protocols achieve distributed orthogonalization, i.e., the effective
MIMO channel matrix between the source and destination terminals is diagonalized (in
a completely decentralized fashion) resulting in full sum capacity pre-log despite the
fact that the destination terminals cannot cooperate. Equivalently, we can say that the
network decouples (into isolated source-destination pair links). The per-stream array gain
A given by AP1 = KN2/M3 for P1 and AP2 = KN2/M2 for P2, can be decomposed into
a contribution due to distributed array gain, Ad, and a contribution due to cooperation
at the relay level (realized by phase matching on backward and forward links), Ac, i.e.,
A = AdAc with Ad,P1 = KN/M3, Ad,P2 = KN/M2 and Ac,P1 = Ac,P2 = N . In order
to illustrate the impact of cooperation at the relay level, we compare a network with
T noncooperating single-antenna relay terminals to a network with a total of T = KN
relay antenna elements cooperating in groups of N antennas. In the single-antenna relay
case (i.e., no cooperation at the relay level), we have

C
(nc)
P1 =

1

2
log

(

1 + Θ

(

T

M3

))

whereas in the multi-antenna relay case (i.e., cooperation in groups of N relay antennas)

C
(c)
P1 =

1

2
log

(

1 + Θ

(

TN

M3

))

.

6Note that in this section we use the Θ(.)-notation only to hide the dependence on E, E, P and P .
Strictly speaking, as N is finite it should also be hidden under the Θ(.)-notation. However, our goal is
to exhibit the impact of cooperation at the relay level on CP1 and CP2, which is the reason for making
the dependence on N explicit.



Cooperation at the relay level in groups of N relay antenna elements therefore yields an
N -fold increase in the effective per-stream SNR due to additional array gain given by
Ac = N . Equivalently, the total number of antenna elements at the relay level needed to
achieve a given per source-destination terminal pair capacity is reduced by a factor of N
through cooperation. The conclusions for P2 are identical.

5 Outage Analysis

The focus in the previous section was on the ergodic capacity scaling behavior of P1 and
P2. In this section, we provide results that have an outage analysis flavor.

We start with the following observation. Since the destination terminals Dl cannot
cooperate independent (single-user) decoding has to be performed. The network can
therefore be viewed as a collection of M single-input single-output (SISO) channels Sl →
Dl (l = 1, 2, ...,M). Each of these SISO channels will have a random-valued channel gain7

gl (due to the fading nature of the network), a random-valued interference term il, caused
by the source signals not intended for a given destination terminal, and a (random-valued)
noise term nl consisting of thermal noise forwarded by the relays and thermal noise at the
destination terminals. The general form of the input-output relationship for the Sl → Dl

link is therefore given by yl = glsl+il+nl (l = 1, 2, . . . ,M). We note that the randomness
in il comes from the fading coefficients and from interfering signals transmitted by other
(than Sl) source terminals. The randomness in nl is due to Gaussian noise and fading
coefficients. In general neither il nor nl will be Gaussian, which makes the capacity
analysis difficult. In this and the next section, we make the conceptual assumption that
the destination terminals know the fading coefficients in the entire network, i.e., hk,l and
fl,k for l = 1, 2, . . . ,M , k = 1, 2, . . . , K, which together with perfect knowledge of8 Ek,l

and Pl,k ∀l, k also implies perfect knowledge of gl at Dl. We emphasize, however, that the
capacity scaling results in Theorems 1 and 2 require only minimal channel knowledge at
the destination terminals. Conditioned on {hk,l, fl,k}∀l,k both il and nl become Gaussian
so that the mutual information for the Sl → Dl link is given by

Il =
1

2
log
(

1 + SINRl|{hk,l,fl,k}
)

with SINRl|{hk,l,fl,k} =
|gl|2

σ2
l + σ2

n

where σ2
l = VAR(il). In the following, we analyze the behavior of the RVs SINRl|{hk,l,fl,k}

for P1 and P2 as M,K → ∞. Since the results in Theorems 3 and 4 are uniformly
valid over all source-destination terminal pairs l = 1, 2, . . . ,M , in the following we shall
simply write SINRP1 and SINRP2 where conditioning on {hk,l, fl,k} is not made explicit
for brevity. Our results show that both SINRP1 and SINRP2 lie within narrow intervals
around their means with high probability when M,K → ∞. The precise statements are
as follows.

Theorem 3. There exist constants C1, C2, C3, C4, C5, C6,M0 and K0 (depending on N,E,
E, P and P only) such that for any M ≥ M0 and K ≥ K0 for any x > 1, the probability

7The following discussion applies to both protocols. For the sake of simplicity of notation we therefore
omit the subscripts P1 and P2.

8In the following, we shall tacitly assume that Ek,l and Pl,k ∀l, k is perfectly known at the destination
terminals.



Pout,P1 of the event SINRP1 /∈ [LP1, UP1], where

LP1 =
π2

16

P E2

P E
2

(

max
[

0, N2K − C1M
√

Kx
])2

N2M2(M − 1)K + C2M5/2Kx + C3M3
(12)

UP1 =
π2

16

P E
2

P E2

(

N2K + C4M
√

Kx
)2

max[0, N2M2(M − 1)K − C5M5/2Kx] + C6M3
(13)

satisfies the following inequality

Pout,P1 ≤ S1(M,K)e−∆1x2/7

(14)

where S1(M,K) is a (Laurent) polynomial in M and K depending on N,E,E, P and P
only and ∆1 is a constant depending on N,E,E, P and P only.

The corresponding result for P2 is given by

Theorem 4. There exist constants C1, C2, C3, C4, C5, C6,M0 and K0 (depending on N,E,
E, P and P only) such that for any M ≥ M0 and K ≥ K0 for any x > 1, the probability
Pout,P2 of the event SINRP2 /∈ [LP2, UP2], where

LP2 =
π2

16

P E2

P E
2

(

max
[

0, N2K − C1

√
MKx

])2

N2M(M − 1)K + C2M3/2Kx + C3M2
(15)

UP2 =
π2

16

P E
2

P E2

(

N2K + C4

√
MKx

)2

max[0, N2M(M − 1)K − C5M3/2Kx] + C6M2
(16)

satisfies the following inequality

Pout,P2 ≤ S2(M,K)e−∆2x2/7

(17)

where S2(M,K) is a polynomial in M and K depending on N,E,E, P and P only and
∆2 is a constant depending on N,E,E, P and P only.

The proofs of (refined versions) of Theorems 3 and 4 along with exact expressions for
S1(M,K), S2(M,K), ∆1 and ∆2 can be found in [15]. Eqs. (14) and (17) state that the
SINRs of the effective channels Sl → Dl (l = 1, 2, ...,M) for both protocols converge to
a deterministic limit as M,K → ∞. Moreover, it is shown in [15] that the per-stream
diversity order approaches ∞ as M,K → ∞ and hence each of the individual SISO
links in the network converges to an AWGN link. In combination with the fact that the
network also decouples (cf. Theorems 1 and 2) we say that the fading interference relay
network “crystallizes” to a set of independent AWGN channels.

The results in Theorems 3 and 4 have the flavor of an outage analysis in the sense
of characterizing the rate of convergence (for M,K → ∞) of the individual SISO fading
links to AWGN links. Indeed, as shown in [15], Theorems 3 and 4 can be reformulated
to provide bounds on the outage probability. For small M and K, the bounds in (14)
and (17), however, tend to be loose. We finally note that the exponent 2/7 in (14) and (17)
is unlikely to be fundamental and is probably a consequence of our proof technique. In
this sense Theorems 3 and 4 should be understood as quantifying a guaranteed rate of
convergence rather than the best possible.
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Figure 2: Simulated (Monte-Carlo) SINR CDFs for different values of M , N = 1 and
N = 4 for (a) K = M3 in P1 and (b) K = M2 in P2.

6 Numerical Results

The goal of this section is to numerically characterize the convergence behavior (as
M,K → ∞) of the individual fading SISO links Sl → Dl to AWGN links.

In all simulation results below, we set Ek,l = Pl,k = 1 ∀l, k and σ2 = 0.01. This choice
for the path loss and shadowing parameters, although not representative of a real-world
scenario, isolates the dependence of our results on the network geometry. Moreover, the
distribution of the different SINR RVs for a given protocol is identical for all links so that
it suffices to analyze the behavior of only one SINR RV for each of the two protocols.

For K = M3 in P1 and K = M2 in P2, Fig. 2 shows the cumulative distribution
functions (CDFs) (obtained through Monte-Carlo methods) of SINRP1 and SINRP2, re-
spectively, for different values of M and N . We observe that for increasing M , with N
fixed, the CDFs approach a step function at the corresponding mean values, i.e., the
SINR RVs converge to a deterministic quantity and consequently the underlying fad-
ing channel converges to an AWGN channel. We can furthermore see that for fixed M
and fixed N the CDFs are very similar for P1 and P2 suggesting that the convergence
behavior is similar for the two protocols. Recall, however, that K = M3 in P1 and
K = M2 in P2. Finally, we note that increasing N for fixed M results in higher per
source-destination terminal pair capacity (cf. Theorems 1 and 2) but at the same time
“slows down convergence” (w.r.t. M and hence also K) to the deterministic limit.

7 Conclusion

For a fading interference relay network, we showed that cooperation at the relay level
results in a reduction of the total number of relay terminal antennas needed to achieve a
given per source-destination terminal pair capacity. Furthermore, we characterized the
convergence behavior of the individual fading source-destination terminal pair links to
AWGN links thereby establishing a guaranteed rate at which the network “crystallizes”
when the number of nodes gets large.
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[1] H. Bölcskei, R. U. Nabar, Ö. Oyman, and A. J. Paulraj, “Capacity scaling laws in MIMO relay
networks,” IEEE Trans. Wireless Commun., 2006, to appear.

[2] A. F. Dana and B. Hassibi, “On the power efficiency of sensory and ad-hoc wireless networks,”
IEEE Trans. Inf. Theory, 2003, submitted.

[3] P. Gupta and P. R. Kumar, “The capacity of wireless networks,” IEEE Trans. Inf. Theory, vol. 46,
no. 2, pp. 388–404, March 2002.

[4] M. Gastpar and M. Vetterli, “On the capacity of wireless networks: The relay case,” in Proc. IEEE
INFOCOM, vol. 3, New York, NY, June 2002, pp. 1577–1586.

[5] M. Grossglauser and D. Tse, “Mobility increases the capacity of ad hoc wireless networks,”
IEEE/ACM Trans. Networking, vol. 10, no. 4, pp. 477–486, Aug. 2002.
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