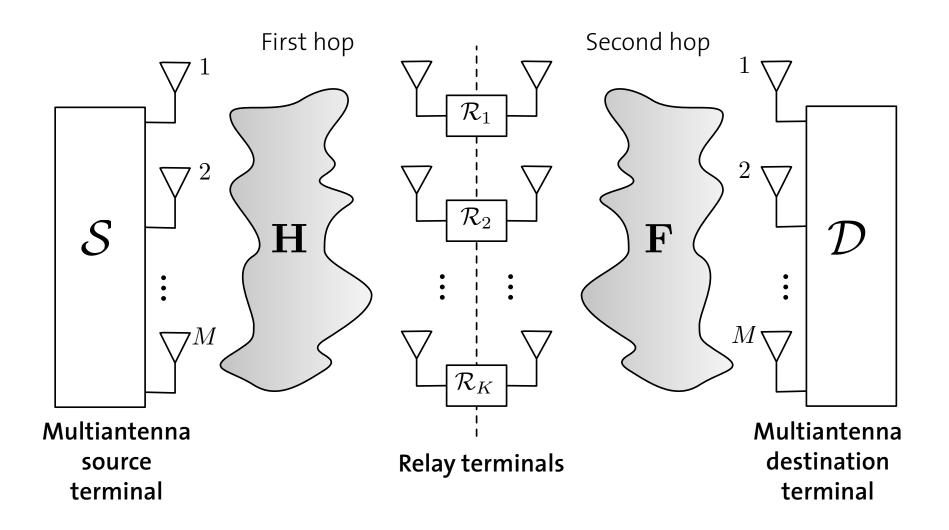
Capacity of Large Amplify and Forward Relay Networks

Veniamin I. Morgenshtern joint work with Helmut Bölcskei

1

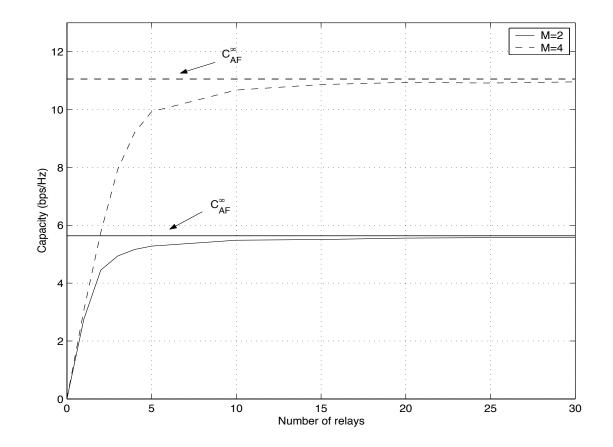
Amplify and Forward (AF) Relay Network



- Total power constraint across source antennas and relay terminals
- Receiver knows composite MIMO channel
- For M fixed, in the limit $K \to \infty$, **AF relay network approaches point-to-point MIMO channel** with capacity [HB et. al., 2004]

$$C_{AF}^{\infty} = \frac{1}{2} \mathbb{E}_{\mathbf{H}} \left[\log \det \left(\mathbf{I} + \text{SNR } \mathbf{H}_{w} \mathbf{H}_{w}^{H} \right) \right] = \frac{M}{2} \log(\text{SNR}) + O(1)$$

Convergence of Capacity



Capacity vs. number of relays for the AF relay network

Generalization to $M \to \infty$

Assumptions

- Overall I-O relation: $\mathbf{y} = d\mathbf{FHs} + d\mathbf{Fn}_r + \mathbf{n}_d$
- Fixed receive SNR at each relay and at each destination node
- $\mathbf{H} \in \mathbb{C}^{K \times M}, \mathbf{F} \in \mathbb{C}^{M \times K}$
 - **H** ... i.i.d. entries with mean 0 and variance 1/M
 - **F** ... i.i.d. entries with mean 0 and variance 1/K
- $\mathbf{n}_r \in \mathbb{C}^{K \times 1}, \mathbf{n}_d \in \mathbb{C}^{M \times 1}$
 - \mathbf{n}_r ... i.i.d. $\mathcal{CN}(0, \sigma_n^2)$ noise at relays
 - \mathbf{n}_d ... i.i.d. $\mathcal{CN}(0, \sigma_n^2)$ noise at destination terminal
- Gaussian codebook, receiver knows ${\bf FH}$ and ${\bf F}$

Capacity

• Capacity of the effective MIMO channel is given by

$$\begin{split} C &= \frac{1}{2} \mathbb{E} \left[\log \det \left(\mathbf{I} + \frac{d^2}{\sigma_n^2} \mathbf{H}^H \mathbf{F}^H \left(\mathbf{I} + d^2 \mathbf{F} \mathbf{F}^H \right)^{-1} \mathbf{F} \mathbf{H} \right) \right] \\ &= \frac{1}{2} \mathbb{E} \left[\sum_{i=1}^K \log \left(1 + \frac{1}{\sigma_n^2} \lambda_i \right) \right] \end{split}$$

with

$$\lambda_i = \lambda_i (\mathbf{H}\mathbf{H}^H\mathbf{T})$$
 and $\mathbf{T} = \mathbf{F}^H \left(\frac{1}{d^2}\mathbf{I} + \mathbf{F}\mathbf{F}^H\right)^{-1}\mathbf{F}$

• Need to study large M, K-behavior of $\lambda_i(\mathbf{H}\mathbf{H}^H\mathbf{T})$

Brief Review of Large Random Matrix Theory

• For an $M \times M$ random Hermitian matrix **X** define the *empirical* eigenvalue distribution function (EEDF) of **X** as

$$F_{\mathbf{X}}^{M}(x) = \frac{1}{M} \sum_{i=1}^{M} \mathbb{1}\left\{\lambda_{i}(\mathbf{X}) \leq x\right\}$$

From Large Random Matrix Theory [Wigner, Silverstein, Bai, ...]:

Under certain assumptions on **X**, when $M \to \infty$, $F_{\mathbf{X}}^{M}(x)$ converges almost surely to a deterministic limit, i.e.,

$$F_{\mathbf{X}}^{M}(x) \xrightarrow{\text{a.s.}} F_{\mathbf{X}}(x)$$

where $F_{\mathbf{X}}(x)$ is the *asymptotic EEDF*

Proof Program (for simplicity of exposition K = M**)**

Goal: Prove convergence of $F^M_{{\bf H}{\bf H}^H{\bf T}}(x)$ and compute the corresponding asymptotic PDF $f_{{\bf H}{\bf H}^H{\bf T}}(x)$

- 1. [Theorem (Silverstein, 1995)]: If $F_{\mathbf{T}}^{M}(x) \xrightarrow{\text{a.s.}} F_{\mathbf{T}}(x)$, then $F_{\mathbf{HH}^{H}\mathbf{T}}^{M}(x) \xrightarrow{\text{a.s.}} F_{\mathbf{HH}^{H}\mathbf{T}}(x)$ with the Stieltjes transform $m_{\mathbf{HH}^{H}\mathbf{T}}(z)$ given by the unique solution of a fixed-point equation (depends on $F_{\mathbf{T}}(x)$)
- 2. Solve the fixed-point equation and find $m_{\mathbf{HH}^{H}\mathbf{T}}(z)$
- 3. Use the Stieltjes inversion formula to compute $f_{\mathbf{HH}^{H}\mathbf{T}}(x)$
- 4. Asymptotic per antenna capacity given by

$$\frac{C}{M} = \frac{1}{2} \int_0^\infty \log\left(1 + \frac{1}{\sigma_n^2} x\right) f_{\mathbf{H}\mathbf{H}^H\mathbf{T}}(x) \, dx$$

Computing $f_{\mathbf{T}}(x)$

- Singular value decomposition $\mathbf{F} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^H$
- **T** can be written as

$$\mathbf{T} = \mathbf{F}^{H} \left(\frac{1}{d^{2}} \mathbf{I} + \mathbf{F} \mathbf{F}^{H} \right)^{-1} \mathbf{F} = \mathbf{V} \operatorname{diag} \left\{ \frac{\lambda_{i}}{1/d^{2} + \lambda_{i}} \right\}_{i=1}^{M} \mathbf{V}^{H}$$

 Marčenko (^{a.s.}→ Marchenko)-Pastur law [Marčenko and Pastur, 1967] gives asymptotic PDF of eigenvalues of

$$\mathbf{F}^{H}\mathbf{F} = \mathbf{V}\operatorname{diag}\{\lambda_{i}\}_{i=1}^{M}\mathbf{V}^{H}$$

• Eigenvalues of $\mathbf{F}^H \mathbf{F}$ and \mathbf{T} are related through a bijection \Rightarrow

$$f_{\mathbf{T}}(x) = \frac{1}{d^2(1-x)^2} f_{\mathbf{F}^H \mathbf{F}} \left(\frac{x}{d^2(1-x)}\right)$$

Computing $f_{\mathbf{T}}(x)$ (Cont'd)

Lemma 1. [Marčenko-Pastur] If the matrix $\mathbf{F} \in \mathbb{C}^{M,M}$ has i.i.d. entries with mean 0 and variance 1/M, then $F^M_{\mathbf{F}^H\mathbf{F}}(x)$ converges a.s., as $M \to \infty$, to a non-random $F_{\mathbf{F}^H\mathbf{F}}(x)$ with corresponding PDF

$$f_{\mathbf{F}^{H}\mathbf{F}}(x) = \begin{cases} \frac{1}{2\pi}\sqrt{\frac{4-x}{x}}, & 0 \leq x \leq 4\\ 0, & \text{otherwise} \end{cases}$$

Lemma 2. Under the same conditions $F_{\mathbf{T}}(x)$ converges a.s., as $M \to \infty$, to a non-random $F_{\mathbf{T}}(x)$ with corresponding PDF

$$f_{\mathbf{T}}(x) = \begin{cases} \frac{1}{2\pi d^2} \frac{1}{(1-x)^2} \sqrt{\frac{4d^2 - (4d^2 + 1)x}{x}}, & 0 \le x \le 4d^2 / (1+4d^2) \\ 0, & \text{otherwise} \end{cases}$$

Let F(x) be a distribution function

• Stieltjes transform:

$$m_F(z) := \int \frac{f(x)}{x-z} dx, \quad z \in \mathbb{C}^+ := \{ z \in \mathbb{C} : \Im z > 0 \}$$

• Inversion formula:

$$f(x) = \frac{1}{\pi} \lim_{y \to 0^+} \Im \left[m_F(x + iy) \right]$$

[Silverstein, 1995]

Assume that

- $\mathbf{H} \in \mathbb{C}^{M \times M}$ has i.i.d. elements with mean 0 and variance 1/M
- $\mathbf{T} \in \mathbb{C}^{M \times M}$ is a random Hermitian nonnegative definite matrix, with $F_{\mathbf{T}}^{M}(x) \xrightarrow{\text{a.s.}} F_{\mathbf{T}}(x)$ on $[0, \infty)$ as $M \to \infty$
- ${f H}$ and ${f T}$ are independent

Then, $F^M_{\mathbf{HH}^H\mathbf{T}}(x) \xrightarrow{\text{a.s.}} F_{\mathbf{HH}^H\mathbf{T}}(x)$, as $M \to \infty$, with Stieltjes transform satisfying

$$m_{\mathbf{H}\mathbf{H}^{H}\mathbf{T}}(z) = -\int_{-\infty}^{\infty} \frac{f_{\mathbf{T}}(x)dx}{z\left(x\,m_{\mathbf{H}\mathbf{H}^{H}\mathbf{T}}(z)+1\right)}, \ z \in \mathbb{C}^{+}$$

The solution of this equation is unique in \mathbb{C}^+

Putting the Pieces Together

• Putting the pieces together, we get

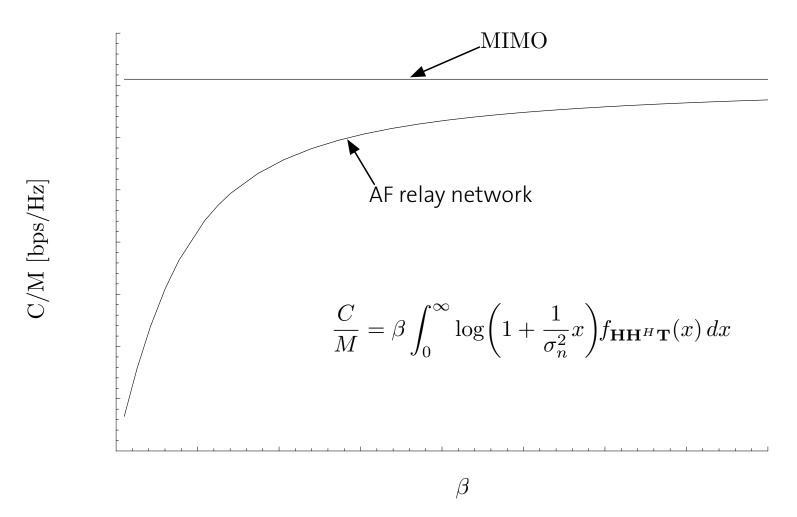
$$m_{\mathbf{H}\mathbf{H}^{H}\mathbf{T}}(z) = -\frac{1}{2\pi d^{2}} \int_{0}^{\frac{4d^{2}}{(4d^{2}+1)}} \frac{\sqrt{4d^{2} - (4d^{2}+1)x}}{(1-x)^{2}\sqrt{x}} \frac{dx}{z \left(x \, m_{\mathbf{H}\mathbf{H}^{H}\mathbf{T}}(z) + 1\right)}$$

• $\Rightarrow m = m_{\mathbf{HH}^{H}\mathbf{T}}(z)$ satisfies the following equation of order 4:

$$d^{2}z^{2}m^{4} + 2d^{2}z^{2}m^{3} + (d^{2}z^{2} + 2d^{2}z - z)m^{2} + (2d^{2}z - 1)m + d^{2} = 0$$

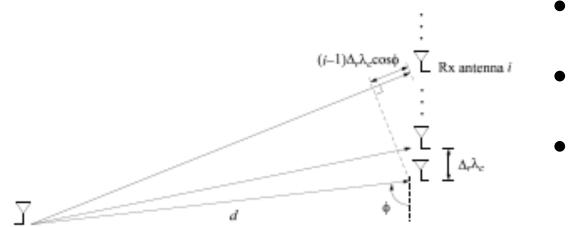
- Only one of the roots satisfies the initial equation
- Asymptotic PDF $f_{\mathbf{HH}^H\mathbf{T}}(x)$ can be computed **analytically** using the Stieltjes inversion formula

Asymptotic Capacity for d = 1 as Function of $\beta = K/M$



Motivation: Relays as active scatterers in poor scattering environment

Line of sight SIMO Flat channel



• λ_c ... wavelength

•
$$d_i \approx d + (i-1)\Delta_r \lambda_c \cos \phi$$

•
$$\Omega = \cos \phi$$

Channel gain is given by

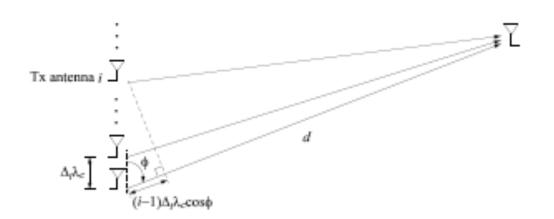
$$h_i = a \exp\left(-\frac{j2\pi d_i}{\lambda_c}\right)$$

Stacking channel gains in a vector $\mathbf{h} = [h_1, \dots, h_{n_r}]^T$ we obtain

$$\mathbf{h} = a \exp\left(-\frac{j2\pi d}{\lambda_c}\right) \underbrace{\begin{bmatrix} 1\\ \exp(-j2\pi\Delta_r\Omega)\\ \exp(-j2\pi 2\Delta_r\Omega)\\ \vdots\\ \exp(-j2\pi(n_r-1)\Delta_r\Omega) \end{bmatrix}}_{\mathbf{e}_r(\Omega)}$$

and the channel is $\mathbf{y} = \mathbf{h}x + \mathbf{n}$

Line of sight MISO Flat channel



Stacking channel gains in a vector $\mathbf{h} = [h_1, \dots, h_{n_r}]^T$ we obtain

$$\mathbf{h} = a \exp\left(-\frac{j2\pi d}{\lambda_c}\right) \underbrace{\begin{bmatrix} 1\\ \exp(-j2\pi\Delta_t\Omega)\\ \exp(-j2\pi 2\Delta_t\Omega)\\ \vdots\\ \exp(-j2\pi(n_t-1)\Delta_t\Omega) \end{bmatrix}}_{\mathbf{e}_t(\Omega)}, \quad y = \mathbf{h}^* \mathbf{x} + n$$

Line of sight MIMO Flat channel is Rank 1

• The channel coefficients are

$$h_{ik} = a \exp(-j2\pi d_{ik}/\lambda_c)$$

• Distances can be approximated as

$$d_{ik} \approx d + (i-1)\Delta_r \lambda_c \cos \phi_r - (k-1)\Delta_t \lambda_c \cos \phi_t$$

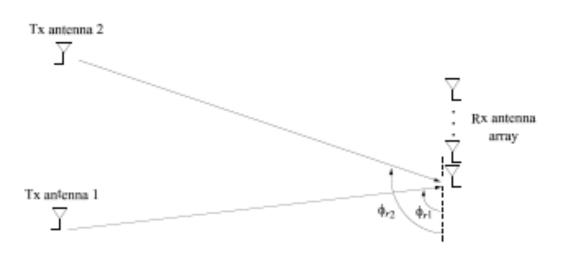
$$\bullet \Rightarrow$$

$$h_{ik} = a \exp\left(-\frac{j\pi 2\pi d}{\lambda_c}\right) \exp(j2\pi (k-1)\Delta_t \Omega_t) \exp(j2\pi (i-1)\Delta_r \Omega_r)$$

• In matrix notation

$$\mathbf{H} = a\sqrt{n_t n_r} \exp\left(-\frac{j2\pi d}{\lambda_c}\right) \mathbf{e}_r(\Omega_r) \mathbf{e}_t(\Omega_t)^*$$

Geographically Separated antennas



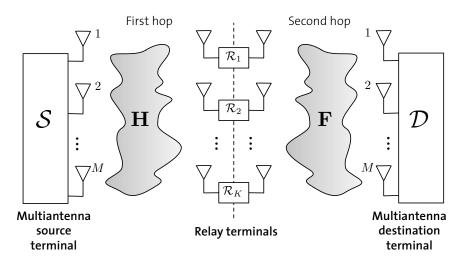
• Now the channel gain for each channel is

$$\mathbf{h}_{k} = a_{k}\sqrt{n_{r}} \exp\left(-\frac{j2\pi d_{1k}}{\lambda_{c}}\right) \mathbf{e}_{r}(\Omega_{rk}), \ k = 1, 2$$

where $\Omega_{rk} = \cos \phi_{rk}$

• Channel matrix $\mathbf{H} = [\mathbf{h}_1, \mathbf{h}_2]$ is full rank

Conclusion



- $\bullet~\mathbf{HF}$ is full rank
- ⇒ Geographically separated relays help to improve poor scattering environment