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Large K Capacity of AF Relay Network for Finite M/

e Total power constraint across source antennas and relay terminals

e Receiver knows composite MIMO channel

e For M fixed, in the limit K — oo, AF relay network approaches
point-to-point MIMO channel with capacity [HB et. al.,, 2004]

1 M
Cir = 5 En logdet (I+SNRH,H)] = 71og(5|\||2) +0(1)



Convergence of Capacity
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Capacity vs. number of relays for the AF relay network



Generalizationto M — o©



Assumptions

e Overall I-O relation: y = dFHs + dFn, + ny
e Fixed receive SNR at each relay and at each destination node

° HE(CKXM,FECMXK

- H ... iid.entries with mean 0 and variance 1/M

- F ... iid. entries with mean 0 and variance 1/K

N = CKXl,nd c (CMxl

- n, ... iid. CN(0,02) noise at relays

- ng ... ii.d.CN(0,02) noise at destination terminal

e Gaussian codebook, receiver knows FH and F



Capacity

e Capacity of the effective MIMO channel is given by

1T d? _
C = 5 E|log det (I + ZHYFY (1+ &PFFH) FH)]
O-TL

1 & 1

with

1 —1
N =NHHYT)  and T =F#" (EHFFH)

e Need to study large M, K-behavior of \;(HH*'T)
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Brief Review of Large Random Matrix Theory

e Foran M x M random Hermitian matrix X define the empirical
eigenvalue distribution function (EEDF) of X as

(@) = 323 1{(X) < 2}

e From Large Random Matrix Theory [Wigner, Silverstein, Bai, ...]:

Under certain assumptions on X, when M — oo, F{!(x) converges
almost surely to a deterministic limit, i.e.,

where Fx(x) is the asymptotic EEDF



Proof Program (for simplicity of exposition K = M)

Goal: Prove convergence of FI%IHT(:U) and compute the corresponding
asymptotic PDF fygar(x)

1. [Theorem (Silverstein, 1995)]: If EM (z) == Fr(z), then
FM (@) == Fygnp(z) with the Stieltjes transform mygap(2)
given by the unique solution of a fixed-point equation (depends on

Frr(x))
2. Solve the fixed-point equation and find myggar(2)

3. Use the Stieltjes inversion formula to compute fygur(x)

4. Asymptotic per antenna capacity given by

cC 1 [ 1

n



Computing fr(x)

e Singular value decomposition F = UXVH

e T can be written as

-1 M
T—F{(Ll1iFF¥) FovV diag Ai vH
2 1/d2 4+ N ,_,

e Marcenko (23 Marchenko)-Pastur law [Marcenko and Pastur, 1967]
gives asymptotic PDF of eigenvalues of

FEF = Vdiag{\;}.}, V

e Eigenvalues of FEF and T are related through a bijection =

fr(z) = 2(1 1_ T Jriw (d2(1x— x))
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Computing fr(z) (Cont'd)

Lemma 1. [Maréenko-Pastur] Ifthe matrix F € CM™M has i.id. entries
with mean 0 and variance 1/M, then F2}, _(x) converges a.s, as M — oo,
to a non-random Fgug(x) With corresponding PDF

;x 0<z<4
fFHF
O, otherwise

Lemma 2. Under the same conditions Fr(x) converges a.s., as M — oo,
to a non-random Fr(x) with corresponding PDF

1 1 4d2?—(4d24+1)x 9 5
fr(x) = 2wd2<1—x>2\/ z , 0<ax<4d?/(1+ 4d°)

0, otherwise

n



Brief Review of Stieltjes Transform

Let F'(xz) be a distribution function

o Stieltjes transform:

mp(z) = / /() de, z€CT:={zcC:S3z>0}

e Inversion formula:

f@) = 1 lim S fme(a +iy)
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[Silverstein, 1995]

Assume that

e Hc CM*Mhasiid. elements with mean 0 and variance 1/M

e T ¢ CM*M s arandom Hermitian nonnegative definite matrix,
with FM () 2> Frp(z)on [0,00) as M — oo

e Hand T are independent

Then, FAL ,.(2) == Fypur(z), as M — oo, with Stieltjes transform

satisfying

mygHT(2) = —/ frl@)d )’ 2eCt

oo Z (@ mygpa(2) +

The solution of this equation is unique in C*
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Putting the Pieces Together

e Putting the pieces together, we get

4d2

() 1 /<4d2+1> VAd? — (4d2 + 1)z dx
m z) = —
HHAT 27Td2 0 (1 — ZU)2\/E Z (I’ mHHHT(Z) —I_ 1)

o = m = myuuy(2) satisfies the following equation of order 4:

d’2*m* + 2d°2°m? 4 (d*2* 4 2d*2 — 2)m* + (2d°z — 1)m +d* = 0

e Only one of the roots satisfies the initial equation

e Asymptotic PDF fggur(x) can be computed analytically using the
Stieltjes inversion formula
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Asymptotic Capacity for d = 1 as Function of 5 = K/M
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Motivation: Relays as active scatterers in poor
scattering environment
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Line of sight SIMO Flat channel

e )\...wavelength

(i-1 A, )-.-C

‘oso.' -LRx.u'.wnm! ° dz ~ d + (7/ L ]-)A'r)\c COS¢

o () =coso

]

Channel gain is given by
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Line of sight SIMO Flat channel

Stacking channel gains in a vectorh = |hq, ...

2
h = aexp (—] )\Wd>

and the channelisy = hx + n

\ =

1
exp(—72mA)
exp(—j2m2A,()

exp(—j2mw(n, — 1)A,Q)

,hn, )1 we obtain

e;(?l)
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Line of sight MISO Flat channel

Tx antenna j J

l_.|

‘.]: —! ¢
g1
(i-1)A ) cosh
Stacking channel gains in a vectorh = [hq, ...,
I 1
exp(—72mA)
0 C
h— aexp (_] )\7‘(’ ) exp(—j2m2A,0)

\ =

hn ]! we obtain

exp(—j2m(n — 1)AQ)

e/ (Q)

y=h"x+n
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Line of sight MIMO Flat channel is Rank 1

e The channel coefficients are
Pk, = anP(_ﬂﬂdz‘k/)\c)
e Distances can be approximated as
dir =~ d+ (1 — 1)ApAccos o — (B — 1)AiAc coSy,

° =

Jm2nd
Ac

hix, = aexp (— ) exp(j2m(k — 1)AQy) exp(j2m (i — 1)A,.)

e |n matrix notation

92md

H = aWexp(— N ) e (2,)e ()"
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Geographically Separated antennas

Tx antenna 2
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e Now the channel gain for each channel is

27d
hy, :ak\/_nrexp(—] . ”“) e (), k=12

where €, = cos ¢,k

e Channel matrix H = [hy, ho] is full rank



Conclusion
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e HF is full rank

e = Geographically separated relays help to improve poor scattering
environment
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