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Amplify and Forward (AF) Relay Network
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Large K Capacity of AF Relay Network for Finite M

• Total power constraint across source antennas and relay terminals

• Receiver knows composite MIMO channel

• For M fixed, in the limit K → ∞, AF relay network approaches
point-to-point MIMO channel with capacity [HB et. al., 2004]

C∞AF =
1

2
EH

[
log det
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I + SNR HwHH

w
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M

2
log(SNR) +O(1)
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Convergence of Capacity
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Generalization to M →∞
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Assumptions
• Overall I-O relation: y = dFHs + dFnr + nd

• Fixed receive SNR at each relay and at each destination node

• H ∈ CK×M ,F ∈ CM×K

– H . . . i.i.d. entries with mean 0 and variance 1/M

– F . . . i.i.d. entries with mean 0 and variance 1/K

• nr ∈ CK×1,nd ∈ CM×1

– nr . . . i.i.d. CN (0, σ2
n) noise at relays

– nd . . . i.i.d. CN (0, σ2
n) noise at destination terminal

• Gaussian codebook, receiver knows FH and F
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Capacity
• Capacity of the effective MIMO channel is given by

C =
1

2
E
[
log det

(
I +

d2

σ2
n

HHFH
(
I + d2FFH

)−1
FH

)]

=
1

2
E

[
K∑
i=1

log

(
1 +

1

σ2
n

λi

)]

with

λi = λi(HHHT) and T = FH
(

1

d2
I + FFH

)−1

F

• Need to study large M,K-behavior of λi(HHHT)
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Brief Review of Large Random Matrix Theory

• For an M ×M random Hermitian matrix X define the empirical
eigenvalue distribution function (EEDF) of X as

FMX (x) =
1

M

M∑
i=1

1 {λi(X) ≤ x}

• From Large Random Matrix Theory [Wigner, Silverstein, Bai, . . . ]:
Under certain assumptions on X, when M →∞, FMX (x) converges
almost surely to a deterministic limit, i.e.,

FMX (x)
a.s.−−→ FX(x)

where FX(x) is the asymptotic EEDF
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Proof Program (for simplicity of exposition K = M )
Goal: Prove convergence of FM

HHHT
(x) and compute the corresponding

asymptotic PDF fHHHT(x)

1. [Theorem (Silverstein, 1995)]: If FMT (x)
a.s.−−→ FT(x), then

FM
HHHT

(x)
a.s.−−→ FHHHT(x) with the Stieltjes transform mHHHT(z)

given by the unique solution of a fixed-point equation (depends on
FT(x))

2. Solve the fixed-point equation and find mHHHT(z)

3. Use the Stieltjes inversion formula to compute fHHHT(x)

4. Asymptotic per antenna capacity given by

C

M
=

1

2

∫ ∞
0

log

(
1 +

1

σ2
n

x

)
fHHHT(x) dx
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Computing fT(x)

• Singular value decomposition F = UΣVH

• T can be written as

T = FH
(

1

d2
I + FFH

)−1

F = V diag

{
λi

1/d2 + λi

}M
i=1

VH

• Marčenko (a.s.→Marchenko)-Pastur law [Marčenko and Pastur, 1967]
gives asymptotic PDF of eigenvalues of

FHF = V diag{λi}Mi=1 VH

• Eigenvalues of FHF and T are related through a bijection⇒

fT(x) =
1

d2(1− x)2
fFHF

(
x

d2(1− x)

)

10



Computing fT(x) (Cont’d)

Lemma 1. [Marčenko-Pastur] If the matrix F ∈ CM,M has i.i.d. entries
with mean 0 and variance 1/M , then FM

FHF
(x) converges a.s., asM →∞,

to a non-random FFHF(x) with corresponding PDF

fFHF(x) =

 1
2π

√
4−x
x , 0 ≤ x ≤ 4

0, otherwise

Lemma 2. Under the same conditions FT(x) converges a.s., asM →∞,
to a non-random FT(x) with corresponding PDF

fT(x) =

 1
2πd2

1
(1−x)2

√
4d2−(4d2+1)x

x , 0 ≤ x ≤ 4d2/(1 + 4d2)

0, otherwise
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Brief Review of Stieltjes Transform

Let F (x) be a distribution function

• Stieltjes transform:

mF (z) :=

∫
f(x)

x− z
dx, z ∈ C+:= {z ∈ C : =z > 0}

• Inversion formula:

f(x) =
1

π
lim
y→0+

= [mF (x+ iy)]
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[Silverstein, 1995]
Assume that

• H ∈ CM×M has i.i.d. elements with mean 0 and variance 1/M

• T ∈ CM×M is a random Hermitian nonnegative definite matrix,
with FMT (x)

a.s.−−→ FT(x) on [0,∞) as M →∞

• H and T are independent

Then, FM
HHHT

(x)
a.s.−−→ FHHHT(x), as M →∞, with Stieltjes transform

satisfying

mHHHT(z) = −
∫ ∞
−∞

fT(x)dx

z (xmHHHT(z) + 1)
, z ∈ C+

The solution of this equation is unique in C+
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Putting the Pieces Together
• Putting the pieces together, we get

mHHHT(z) = − 1

2πd2

∫ 4d2

(4d2+1)

0

√
4d2 − (4d2 + 1)x

(1− x)2
√
x

dx

z (xmHHHT(z) + 1)

• ⇒m = mHHHT(z) satisfies the following equation of order 4:

d2z2m4 + 2d2z2m3 + (d2z2 + 2d2z − z)m2 + (2d2z − 1)m+ d2 = 0

• Only one of the roots satisfies the initial equation

• Asymptotic PDF fHHHT(x) can be computed analytically using the
Stieltjes inversion formula
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Asymptotic Capacity for d = 1 as Function of β = K/M
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Motivation: Relays as active scatterers in poor
scattering environment
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Line of sight SIMO Flat channel

• λc ... wavelength

• di ≈ d+ (i− 1)∆rλc cosφ

• Ω = cosφ

Channel gain is given by

hi = a exp

(
−j2πdi

λc

)
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Line of sight SIMO Flat channel

Stacking channel gains in a vector h = [h1, . . . , hnr]
T we obtain

h = a exp

(
−j2πd

λc

)


1
exp(−j2π∆rΩ)
exp(−j2π2∆rΩ)

.

.
exp(−j2π(nr − 1)∆rΩ)


︸ ︷︷ ︸

er(Ω)

and the channel is y = hx+ n
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Line of sight MISO Flat channel

Stacking channel gains in a vector h = [h1, . . . , hnr]
T we obtain

h = a exp

(
−j2πd

λc

)


1
exp(−j2π∆tΩ)
exp(−j2π2∆tΩ)

.

.
exp(−j2π(nt − 1)∆tΩ)


︸ ︷︷ ︸

et(Ω)

, y = h∗x + n
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Line of sight MIMO Flat channel is Rank 1
• The channel coefficients are

hik = a exp(−j2πdik/λc)

• Distances can be approximated as

dik ≈ d+ (i− 1)∆rλc cosφr − (k − 1)∆tλc cosφt

• ⇒

hik = a exp

(
−jπ2πd

λc

)
exp(j2π(k − 1)∆tΩt) exp(j2π(i− 1)∆rΩr)

• In matrix notation

H = a
√
ntnr exp

(
−j2πd

λc

)
er(Ωr)et(Ωt)

∗
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Geographically Separated antennas

• Now the channel gain for each channel is

hk = ak
√
nr exp

(
−j2πd1k

λc

)
er(Ωrk), k = 1, 2

where Ωrk = cosφrk

• Channel matrix H = [h1,h2] is full rank
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Conclusion
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• HF is full rank

• ⇒ Geographically separated relays help to improve poor scattering
environment
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