Mathematical methods for machine learning and signal processing \quad SS 19

 Solutions to problem set 1Prof. Veniamin Morgenshtern
Solver: Prof. Veniamin Morgenshtern

Problem 1: Overcomplete expansion in \mathbb{R}^{2}

1. Consider the vectors

$$
\mathbf{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad \mathbf{e}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad \mathbf{e}_{3}=\mathbf{e}_{1}-\mathbf{e}_{2}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] .
$$

Our goal is to find vectors $\tilde{\mathbf{e}}_{1}, \tilde{\mathbf{e}}_{2}, \tilde{\mathbf{e}}_{3}$ such that

$$
\mathbf{x}=\left\langle\mathbf{x}, \tilde{\mathbf{e}}_{1}\right\rangle \mathbf{e}_{1}+\left\langle\mathbf{x}, \tilde{\mathbf{e}}_{2}\right\rangle \mathbf{e}_{2}+\left\langle\mathbf{x}, \tilde{\mathbf{e}}_{3}\right\rangle \mathbf{e}_{3}=\underbrace{\left[\begin{array}{lll}
\mathbf{e}_{1} & \mathbf{e}_{2} & \mathbf{e}_{3}
\end{array}\right]}_{\mathbf{A}}\left[\begin{array}{c}
\tilde{\mathbf{e}}_{1}^{\top} \\
\tilde{\mathbf{e}}_{2}^{\top} \\
\tilde{\mathbf{e}}_{3}^{\top}
\end{array}\right] \mathbf{x} .
$$

In order to find these vectors, we are looking for a right inverse of the matrix A. One possible right inverse can be found by noting that

$$
\mathbf{A} \underbrace{\mathbf{A}^{\top}\left(\mathbf{A A}^{\top}\right)^{-1}}_{\text {right inverse }}=\mathbf{I} .
$$

First we calculate

$$
\mathbf{A A}^{\top}=\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
1 & -1
\end{array}\right]=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]
$$

and the inverse

$$
\left(\mathbf{A A}^{\boldsymbol{T}}\right)^{-1}=\frac{1}{3}\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

and finally

$$
\left[\begin{array}{c}
\tilde{e}_{1}^{\prime \top} \\
\tilde{e}_{2}^{\top} \\
\tilde{e}_{3}^{\top}
\end{array}\right]=\mathbf{A}^{\top}\left(\mathbf{A A}^{\top}\right)^{-1}=\frac{1}{3}\left[\begin{array}{cc}
2 & 1 \\
1 & 2 \\
1 & -1
\end{array}\right] .
$$

The vectors $\tilde{\mathbf{e}}_{1}^{\prime}, \tilde{\mathbf{e}}_{2}^{\prime}, \tilde{\mathbf{e}}_{3}^{\prime}$ are given by

$$
\tilde{\mathbf{e}}_{1}^{\prime}=\left[\begin{array}{l}
2 / 3 \\
1 / 3
\end{array}\right], \tilde{\mathbf{e}}_{2}^{\prime}=\left[\begin{array}{l}
1 / 3 \\
2 / 3
\end{array}\right], \tilde{\mathbf{e}}_{3}^{\prime}=\left[\begin{array}{c}
1 / 3 \\
-1 / 3
\end{array}\right] .
$$

Comparing to the given set of vectors $\tilde{\mathbf{e}}_{1}, \tilde{\mathbf{e}}_{2}, \tilde{\mathbf{e}}_{3}$ we find

$$
\tilde{\mathbf{e}}_{1}=2 \mathbf{e}_{1}=\left[\begin{array}{l}
2 \\
0
\end{array}\right], \quad \tilde{\mathbf{e}}_{2}=-\mathbf{e}_{3}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right], \quad \tilde{\mathbf{e}}_{3}=-\mathbf{e}_{1}=\left[\begin{array}{c}
-1 \\
0
\end{array}\right] .
$$

It should be emphasized that the right inverse is not unique: the system of equations

$$
\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1
\end{array}\right] \underbrace{\left[\begin{array}{ll}
a & b \\
c & d \\
e & f
\end{array}\right]}_{\mathbf{B}}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

has infinitely many solutions of the form

$$
\mathbf{B}=\left[\begin{array}{cc}
1-\lambda & -\gamma \\
\lambda & 1+\gamma \\
\lambda & \gamma
\end{array}\right]
$$

for any $\lambda, \gamma \in \mathbb{R}$. Any such matrix \mathbf{B} is a valid right inverse of \mathbf{A}, which generates in general different set of vectors $\tilde{\mathbf{e}}_{1}, \tilde{\mathbf{e}}_{2}, \tilde{\mathbf{e}}_{3}$.
2. Assume that \mathbf{x} can be written in the form

$$
\mathbf{x}=\left\langle\mathbf{x}, \mathbf{e}_{1}^{\prime}\right\rangle \tilde{\mathbf{e}}_{1}+\left\langle\mathbf{x}, \mathbf{e}_{2}^{\prime}\right\rangle \tilde{\mathbf{e}}_{2}=\left[\begin{array}{ll}
\tilde{\mathbf{e}}_{1} & \tilde{\mathbf{e}}_{2}
\end{array}\right]\left[\begin{array}{c}
\mathbf{e}_{1}^{\prime \boldsymbol{T}} \\
\mathbf{e}_{2}^{\prime \boldsymbol{T}}
\end{array}\right] \mathbf{x}=\underbrace{\left[\begin{array}{cc}
1 & 0 \\
-1 & \sqrt{2}
\end{array}\right]}_{\mathbf{A}}\left[\begin{array}{c}
\mathbf{e}_{1}^{\prime \boldsymbol{T}} \\
\mathbf{e}_{2}^{\prime \boldsymbol{T}}
\end{array}\right] \mathbf{x} .
$$

\mathbf{A} is a square, non-singular matrix and has, therefore, a unique inverse

$$
\mathbf{A}^{-1}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
\sqrt{2} & 0 \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right]=\left[\begin{array}{c}
\tilde{\mathbf{e}}_{1}^{\top} \\
\tilde{\mathbf{e}}_{2}^{\top}
\end{array}\right] \Rightarrow \mathbf{e}_{1}^{\prime}=\mathbf{e}_{1}, \mathbf{e}_{2}^{\prime}=\mathbf{e}_{2} .
$$

We conclude that \mathbf{x} can be represented in the form

$$
\mathbf{x}=\left\langle\mathbf{x}, \mathbf{e}_{1}\right\rangle \tilde{\mathbf{e}}_{1}+\left\langle\mathbf{x}, \mathbf{e}_{2}\right\rangle \tilde{\mathbf{e}}_{2}
$$

and this expansion is unique.

Problem 2: Equality in the Cauchy-Schwarz inequality

First, here is a proof of Cauchy-Schwarz inequality. Assume that $g \neq 0$, otherwise the inequality is trivially true. Define $\lambda=\langle f, g\rangle /\|g\|^{2}$ Then:

$$
\begin{aligned}
0 & \leq\|f-\lambda g\|^{2} \\
& =\langle f, f\rangle-\langle\lambda g, f\rangle-\langle f, \lambda g\rangle+\langle\lambda g, \lambda g\rangle \\
& =\|f\|^{2}-\lambda\langle g, f\rangle-\lambda^{*}\langle f, g\rangle+\lambda \lambda^{*}\langle g, g\rangle \\
& =\|f\|^{2}-\lambda\langle f, g\rangle^{*}-\lambda^{*}\langle f, g\rangle+\lambda \lambda^{*}\|g\|^{2} \\
& =\|f\|^{2}-\frac{|\langle f, g\rangle|^{2}}{\|g\|^{2}}-\frac{|\langle f, g\rangle|^{2}}{\|g\|^{2}}+\frac{|\langle f, g\rangle|^{2}}{\|g\|^{2}} \\
& =\|f\|^{2}-\frac{|\langle f, g\rangle|^{2}}{\|g\|^{2}} .
\end{aligned}
$$

Therefore, $|\langle f, g\rangle| \leq\|f\|\|g\|$.

Next, let's solve the problem. Let's assume $\|f\|=\|g\|=1$ and $\langle f, g\rangle=1$, then from

$$
\langle f-g, g\rangle=\langle f, g\rangle-\|g\|=0
$$

we conclude that $f-g$ is orthogonal to g . Applying Pythagoras theorem to $f=f-g+g$ we can write

$$
\begin{aligned}
& \|f\|^{2}=\|f-g\|^{2}+\|g\|^{2} \\
& \Rightarrow\|f-g\|^{2}=0 \\
& \Rightarrow f=g .
\end{aligned}
$$

In the general case $\|f\| \neq 1$ and $\|g\| \neq 1$, we can do the following

$$
\begin{aligned}
& |\langle f, g\rangle|=\|f\|\|g\| \\
& \Rightarrow\left|\left\langle\frac{f}{\|f\|}, \frac{g}{\|g\|}\right\rangle\right|=1
\end{aligned}
$$

We can multiply f by $e^{i \phi}$ such that

$$
\left\langle\frac{e^{\mathrm{i} \phi} f}{\|f\|}, \frac{g}{\|g\|}\right\rangle=1
$$

define $\tilde{f}=e^{\mathrm{i} \phi} \frac{f}{\|f\|}$ and $\tilde{g}=\frac{g}{\|g\|}$. Now we have the first case again

$$
\begin{aligned}
& \langle\tilde{f}, \tilde{g}\rangle=1 \\
& \|\tilde{f}\|=\|\tilde{g}\|=1 \\
& \Rightarrow \tilde{f}=\tilde{g} \\
& \Rightarrow f=e^{-\mathrm{i} \phi} \frac{\|f\|}{\|g\|} g=c g .
\end{aligned}
$$

Problem 3: Useful identities in a Hilbert Space

1. Parallelogram law

$$
\begin{aligned}
\|f+g\|^{2}+\|f-g\|^{2} & =\langle f+g, f+g\rangle+\langle f-g, f-g\rangle \\
& =\langle f, f+g\rangle+\langle g, f+g\rangle+\langle f, f-g\rangle-\langle g, f-g\rangle \\
& =\langle f, f\rangle+\langle f, g\rangle+\langle g, f\rangle+\langle g, g\rangle+\langle f, f\rangle-\langle f, g\rangle-\langle g, f\rangle+\langle g, g\rangle \\
& =2\|f\|^{2}+2\|g\|^{2}+\langle f, g\rangle+\langle g, f\rangle^{*}-\langle f, g\rangle-\langle f, g\rangle^{*} \\
& =2\|f\|^{2}+2\|g\|^{2}+2 \Re\langle f, g\rangle-2 \Re\langle f, g\rangle \\
& =2\left(\|f\|^{2}+\|g\|^{2}\right)
\end{aligned}
$$

2. Polarization identity

$$
\begin{aligned}
& \frac{1}{4}\left(\|f+g\|^{2}-\|f-g\|^{2}+\mathrm{i}\left[\left\|\frac{f}{\mathrm{i}}+g\right\|^{2}-\left\|\frac{f}{\mathrm{i}}-g\right\|^{2}\right]\right) \\
= & \frac{1}{4}\left(\langle f+g, f+g\rangle-\langle f-g, f-g\rangle+i\left[\left\langle\frac{f}{i}+g, \frac{f}{i}+g\right\rangle-\left\langle\frac{f}{i}-g, \frac{f}{i}-g\right\rangle\right]\right) \\
= & \frac{1}{4}\left(\|f\|^{2}+\|g\|^{2}+2 \Re\langle f, g\rangle-\|f\|^{2}-\|g\|^{2}+2 \Re\langle f, g\rangle\right. \\
& \left.+i\left[-\|f\|^{2}+\|g\|^{2}-i\langle f, g\rangle+i\langle g, f\rangle+\|f\|^{2}-\|g\|^{2}-i\langle f, g\rangle+i\langle g, f\rangle\right]\right) \\
= & \frac{1}{4}(4 \Re\langle f, g\rangle+4 \mathrm{i} \Im\langle f, g\rangle)=\langle f, g\rangle
\end{aligned}
$$

Problem 4: Discrete Fourier Transform (DFT) as a signal expansion

Define the basis functions

$$
e_{k}[n]=\frac{1}{\sqrt{N}} e^{i 2 \pi \frac{k}{N} n}, \quad k=0,1, \ldots, N-1 .
$$

They form an ONS as shown by

$$
\begin{aligned}
\left\langle e_{k}, e_{l}\right\rangle & =\sum_{n=0}^{N-1} e_{k}[n] e_{l}[n]^{*}=\sum_{n=0}^{N-1} \frac{1}{\sqrt{N}} e^{i 2 \pi \frac{k}{N} n} \frac{1}{\sqrt{N}} e^{-i 2 \pi \frac{l}{N} n}=\frac{1}{N} \sum_{k=0}^{N-1} e^{i \frac{2 \pi}{N}(k-l) n} \\
& = \begin{cases}\frac{1}{N} \frac{e^{i 2 \pi(k-l)}-1}{e^{i(k-l) \frac{2 \pi}{N}-1}=0,} & k \neq l \\
\frac{1}{N} \sum_{k=0}^{N-1} 1=1, & k=l .\end{cases}
\end{aligned}
$$

We have N functions in \mathbb{C}^{N} that form an ONS, thus, they form an ONB. Therefore every signal can be expressed as

$$
f[n]=\sum_{k=0}^{N-1}\left\langle f, e_{k}\right\rangle e_{k}[n]
$$

where

$$
\left\langle f, e_{k}\right\rangle=\sum_{n=0}^{N-1} f[n] e_{k}[n]^{*}=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} f[n] e^{-i 2 \pi \frac{k}{N} n}=\widehat{f}[n] .
$$

Therefore we see that the inverse of the DFT is given by

$$
f[n]=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \widehat{f}[n] e^{i 2 \pi \frac{k}{N} n}
$$

From the lecture we know that an ONB is a tight and exact frame with frame bounds $A=$ $B=1$.

Problem 5: Unitary transformation of a frame

Condition that $\left\{g_{j}\right\}_{j \in \mathcal{J}}$ is a frame means that there exist $A>0$ and $B<\infty$ such that for any $f \in \mathcal{H}$

$$
A\|f\|^{2} \leq \sum_{j}\left|\left\langle f, g_{j}\right\rangle\right|^{2} \leq B\|f\|^{2} .
$$

Then we have

$$
\begin{aligned}
\sum_{j}\left|\left\langle f, \mathbb{U} g_{j}\right\rangle\right|^{2}=\sum_{j}\left|\left\langle\mathbb{U}^{*} f, g_{j}\right\rangle\right|^{2} & \leq B\left\|\mathbb{U}^{*} f\right\|^{2} \\
& \leq B\left\|\mathbb{U}^{*}\right\|^{2}\|f\|^{2} \\
& =B\|f\|^{2},
\end{aligned}
$$

which establishes the upper frame bound. Next,
$A\|f\|^{2}=A\langle\mathbb{I} f, f\rangle=A\left\langle\mathbb{U}^{*} f, f\right\rangle=A\left\langle\mathbb{U}^{*} f, \mathbb{U}^{*} f\right\rangle=A\left\|\mathbb{U}^{*} f\right\|^{2} \leq \sum_{j}\left|\left\langle\mathbb{U}^{*} f, g_{j}\right\rangle\right|^{2}=\sum_{j}\left|\left\langle f, \mathbb{U} g_{j}\right\rangle\right|^{2}$,
which establishes the lower frame bound. Therefore, $\left\{\mathbb{U} g_{j}\right\}_{j \in \mathcal{J}}$ is a frame for \mathcal{H} with the same frame bounds A and B. We have used in the proof the properties of a unitary operator \mathbb{U} : $\mathbb{U}^{*}=\mathbb{U}^{*} \mathbb{U}=\mathbb{I}$ and $\|\mathbb{U}\|=\left\|\mathbb{U}^{*}\right\|=1$.

Problem 6: Redundancy of a frame

(a) We have that for every $\mathbf{f} \in \mathbb{C}^{M}$

$$
\begin{equation*}
A\|\mathbf{f}\|^{2}=\sum_{j=1}^{N}\left|\left\langle\mathbf{f}, \mathbf{g}_{j}\right\rangle\right|^{2} \tag{1}
\end{equation*}
$$

Now let $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{M}\right\}$ be an ONB for \mathbb{C}^{M} and expand \mathbf{g}_{j} as $\mathbf{g}_{j}=\sum_{k=1}^{M} c_{k j} \mathbf{e}_{k}$. By Parseval's identity,

$$
\begin{equation*}
1=\left\|\mathbf{g}_{j}\right\|^{2}=\sum_{k=1}^{M}\left|c_{k j}\right|^{2}, \text { for all } j \in\{1, \ldots, N\} \tag{2}
\end{equation*}
$$

Taking \mathbf{f} to be $\mathbf{e}_{l}, l \in\{1, \ldots, M\}$ and using equation (11) we obtain

$$
\begin{equation*}
A=\sum_{j=1}^{N}\left|\left\langle\mathbf{e}_{l}, \mathbf{g}_{j}\right\rangle\right|^{2}=\sum_{j=1}^{N}\left|c_{l j}^{*}\right|^{2}=\sum_{j=1}^{N}\left|c_{l j}\right|^{2} . \tag{3}
\end{equation*}
$$

From (2) we conclude that $\sum_{j=1}^{M} \sum_{k=1}^{N}\left|c_{k j}\right|^{2}=N$; form (3) we at the same time have $\sum_{j=1}^{M} \sum_{k=1}^{N}\left|c_{k j}\right|^{2}=M A$. Combining these two expressions together we conclude that $A=N / M$.
(b) For any $\mathbf{f} \in \mathbb{C}^{M}$ we have that

$$
\begin{equation*}
A\|\mathbf{f}\|^{2} \leq \sum_{j=1}^{N}\left|\left\langle\mathbf{f}, \mathbf{g}_{j}\right\rangle\right|^{2} \leq B\|\mathbf{f}\|^{2} \tag{4}
\end{equation*}
$$

Taking $\mathbf{f}=\mathbf{e}_{l}, l \in\{1, \ldots, M\}$ we obtain therefore that

$$
\begin{equation*}
\sum_{j=1}^{N}\left|\left\langle\mathbf{f}, \mathbf{g}_{j}\right\rangle\right|^{2}=\sum_{j=1}^{N}\left|c_{l j}\right|^{2} \tag{5}
\end{equation*}
$$

Now, from (4) it follows that $A M\|\mathbf{f}\|^{2} \leq M \sum_{j=1}^{N}\left|\left\langle\mathbf{f}, \mathbf{g}_{j}\right\rangle\right|^{2} \leq M B\|\mathbf{f}\|^{2}$; from (5), on the other hand, we conclude $M \sum_{j=1}^{N}\left|\left\langle\mathbf{f}, \mathbf{g}_{j}\right\rangle\right|^{2}=\sum_{l=1}^{M} \sum_{j=1}^{N}\left|\left\langle\mathbf{f}, \mathbf{g}_{j}\right\rangle\right|^{2}=\sum_{l=1}^{M} \sum_{j=1}^{N}\left|c_{l j}\right|^{2}=$ $\sum_{j=1}^{N} \sum_{l=1}^{M}\left|c_{l j}\right|^{2}=\sum_{j=1}^{N}\left\|\mathbf{g}_{j}\right\|^{2}=N$.
We now see that

$$
A M \leq N \leq B M
$$

and so

$$
A \leq \frac{N}{M} \leq B
$$

Problem 7: Frame bounds

If one removes elements from an ONB, and takes f as one of those elements, it is seen that $A=0$ and $B=1<\infty$. If one adds countably infinite copies of a single basis element to the ONB to form a frame, it is seen that $A=1>0$ and $B=+\infty$. Obviously, both sequences are not frames since $A=0$ or $B=+\infty$ are not permissible frame bounds.

Problem 8: Tight frame as an orthogonal projection of an ONB

$\left\{\mathbb{P} \mathbf{e}_{j}\right\}_{j=1}^{N}$ spans \mathcal{H}^{\prime}, but it is not a linearly independent set since $N>M$ and is therefore not a basis for \mathcal{H}^{\prime}. Now we have for every $\mathbf{f} \in \mathcal{H}^{\prime}$

$$
\sum_{j=1}^{N}\left|\left\langle\mathbf{f}, \mathbb{P} \mathbf{e}_{j}\right\rangle\right|^{2}=\sum_{j=1}^{N}\left|\left\langle\mathbb{P}^{*} \mathbf{f}, \mathbf{e}_{j}\right\rangle\right|^{2}=\sum_{j=1}^{N}\left|\left\langle\mathbb{P} \mathbf{f}, \mathbf{e}_{j}\right\rangle\right|^{2}=\|\mathbb{P} \mathbf{f}\|^{2}=\|\mathbf{f}\|^{2}
$$

where in the second equality we used the fact that orthogonal projections are self-adjoint and in the last equation the fact that for all $\mathbf{f} \in \mathcal{H}^{\prime}$ we have $\mathbb{P} \mathbf{f}=\mathbf{f}$. We conclude that $\left\{\mathbb{P} \mathbf{e}_{j}\right\}_{j=1}^{N}$ is a tight frame for \mathcal{H}^{\prime} with frame bound 1.

Note: $\mathbb{P} \mathbf{f}=\mathbf{f}$ for all $\mathbf{f} \in \mathcal{H}^{\prime}$ since \mathbb{P} is onto \mathcal{H}^{\prime}, i.e., there exists $\mathbf{h} \in \mathcal{H}$, not necessarily unique, such that $\mathbf{f}=\mathbb{P} \mathbf{h}$, and so $\mathbb{P} \mathbf{f}=\mathbb{P} \mathbf{P}=\mathbb{P} \mathbf{h}=\mathbf{f}$. (\mathbb{P} is idempotent)

