Mathematical methods for machine learning and signal processing

Problem set 1

Veniamin Morgenshtern, Helmut Bölcskei, and Giuseppe Durisi
Due date: 9. May 2019

Problem 1: Overcomplete expansion in \mathbb{R}^{2}

Consider the following example discussed in class. Given the vectors

$$
\mathbf{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad \mathbf{e}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad \mathbf{e}_{3}=\mathbf{e}_{1}-\mathbf{e}_{2}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

we found that any vector $\mathbf{x} \in \mathbb{R}^{2}$ can be represented as a linear combination

$$
\mathbf{x}=\left\langle\mathbf{x}, \tilde{\mathbf{e}}_{1}\right\rangle \mathbf{e}_{1}+\left\langle\mathbf{x}, \tilde{\mathbf{e}}_{2}\right\rangle \mathbf{e}_{2}+\left\langle\mathbf{x}, \tilde{\mathbf{e}}_{3}\right\rangle \mathbf{e}_{3}
$$

where

$$
\tilde{\mathbf{e}}_{1}=2 \mathbf{e}_{1}, \quad \tilde{\mathbf{e}}_{2}=-\mathbf{e}_{3}, \quad \tilde{\mathbf{e}}_{3}=-\mathbf{e}_{1} .
$$

1. Find another set of vectors $\tilde{\mathbf{e}}_{1}^{\prime}, \tilde{\mathbf{e}}_{2}^{\prime}, \tilde{\mathbf{e}}_{3}^{\prime}$, neither of which is collinear to neither of the vectors $\tilde{\mathbf{e}}_{1}, \tilde{\mathbf{e}}_{2}, \tilde{\mathbf{e}}_{3}$ and such that any vector $\mathbf{x} \in \mathbb{R}^{2}$ can be represented as

$$
\mathbf{x}=\left\langle\mathbf{x}, \tilde{\mathbf{e}}_{1}^{\prime}\right\rangle \mathbf{e}_{1}+\left\langle\mathbf{x}, \tilde{\mathbf{e}}_{2}^{\prime}\right\rangle \mathbf{e}_{2}+\left\langle\mathbf{x}, \tilde{\mathbf{e}}_{3}^{\prime}\right\rangle \mathbf{e}_{3} .
$$

Hint: Look for another right-inverse of the matrix

$$
\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1
\end{array}\right] .
$$

2. Now consider the following example discussed in class. Given the vectors

$$
\mathbf{e}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad \mathbf{e}_{2}=\left[\begin{array}{l}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right], \quad \tilde{\mathbf{e}}_{1}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right], \quad \tilde{\mathbf{e}}_{2}=\left[\begin{array}{c}
0 \\
\sqrt{2}
\end{array}\right]
$$

any vector $\mathbf{x} \in \mathbb{R}^{2}$ can be represented as

$$
\mathbf{x}=\left\langle\mathbf{x}, \mathbf{e}_{1}\right\rangle \tilde{\mathbf{e}}_{1}+\left\langle\mathbf{x}, \mathbf{e}_{2}\right\rangle \tilde{\mathbf{e}}_{2} .
$$

Show that \mathbf{x} can also be written as

$$
\mathbf{x}=\left\langle\mathbf{x}, \tilde{\mathbf{e}}_{1}\right\rangle \mathbf{e}_{1}+\left\langle\mathbf{x}, \tilde{\mathbf{e}}_{2}\right\rangle \mathbf{e}_{2} .
$$

Is it possible in this case to find two other vectors $\mathbf{e}_{1}^{\prime}, \mathbf{e}_{2}^{\prime}$, neither of which is collinear to neither of the vectors $\mathbf{e}_{1}, \mathbf{e}_{2}$ such that

$$
\mathbf{x}=\left\langle\mathbf{x}, \mathbf{e}_{1}^{\prime}\right\rangle \tilde{\mathbf{e}}_{1}+\left\langle\mathbf{x}, \mathbf{e}_{2}^{\prime}\right\rangle \tilde{\mathbf{e}}_{2} ?
$$

If the answer is "yes", find these vectors. If the answer is "no", explain why this is not possible.

Problem 2: Equality in the Cauchy-Schwarz inequality

Prove the following statement: if the elements f and g of a Hilbert space satisfy $|\langle f, g\rangle|=\|f\|\|g\|$ and $g \neq 0$, then $f=c g$ for some $c \in \mathbb{C}$.

Hint: Assume $\|f\|=\|g\|=1$ and $\langle f, g\rangle=1$. Then $f-g$ and g are orthogonal, while $f=f-g+g$. Therefore, $\|f\|^{2}=\|f-g\|^{2}+\|g\|^{2}$.

Problem 3: Useful identities in a Hilbert Space

Prove that for any two elements f and g of a Hilbert space, the following equalities hold:

1. Parallelogram law

$$
\|f+g\|^{2}+\|f-g\|^{2}=2\left(\|f\|^{2}+\|g\|^{2}\right)
$$

2. Polarization identity

$$
\langle f, g\rangle=\frac{1}{4}\left(\|f+g\|^{2}-\|f-g\|^{2}+\mathrm{i}\left[\left\|\frac{f}{\mathrm{i}}+g\right\|^{2}-\left\|\frac{f}{\mathrm{i}}-g\right\|^{2}\right]\right)
$$

Hint: Remember that in a Hilbert space the norm is defined through the inner product as

$$
\|f\|=\sqrt{\langle f, f\rangle} .
$$

Problem 4: Discrete Fourier transform (DFT) as a signal expansion
The DFT of an N-point signal $f[k], k=0, \ldots, N-1$, is defined as

$$
\widehat{f}[n]=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} f[k] e^{-\mathrm{i} 2 \pi \frac{n}{N} k} .
$$

Find the corresponding inverse transform and show that the DFT can be interpreted as a frame expansion in \mathbb{C}^{N}. Compute the frame bounds. Is the underlying frame special?

Problem 5: Unitary transformation of a frame

Let $\left\{g_{k}\right\}_{k \in \mathcal{K}}$ be a frame for the Hilbert space \mathcal{H} with frame bounds A and B. Let $\mathbb{U}: \mathcal{H} \rightarrow \mathcal{H}$ be a unitary operator. Show that the set $\left\{\mathbb{U} g_{k}\right\}_{k \in \mathcal{K}}$ is again a frame for \mathcal{H} and compute the corresponding frame bounds.

Problem 6: Redundancy of a frame

Let $\left\{\mathbf{g}_{k}\right\}_{k=1}^{N}$ be a frame for \mathbb{C}^{M} with $N>M$. Assume that the frame vectors are normalized such that $\left\|\mathbf{g}_{k}\right\|=1, k=1, \ldots, N$. The ratio N / M is called the redundancy of the frame.

1. Assume that $\left\{\mathbf{g}_{k}\right\}_{k=1}^{N}$ is a tight frame with frame bound A. Show that $A=N / M$.
2. Now assume that A and B are the frame bounds of $\left\{\mathbf{g}_{k}\right\}_{k=1}^{N}$. Show that $A \leq N / M \leq B$.

Problem 7: Frame bounds

Prove that the upper and the lower frame bound are unrelated: In an arbitrary Hilbert space \mathcal{H} find a set $\left\{g_{k}\right\}_{k \in \mathcal{K}}$ with an upper frame bound $B<\infty$ but with the tightest lower frame bound $A=0$; find another set $\left\{g_{k}\right\}_{k \in \mathcal{K}}$ with lower frame bound $A>0$ but with the tightest upper frame bound $B=\infty$. Is it possible to find corresponding examples in the finite-dimensional space \mathbb{C}^{M} ?

Problem 8: Tight frame as an orthogonal projection of an ONB

Let $\left\{\mathbf{e}_{k}\right\}_{k=1}^{N}$ be an ONB for an N-dimensional Hilbert space \mathcal{H}. For $M<N$, let \mathcal{H}^{\prime} be an M dimensional subspace of \mathcal{H}. Let $\mathbb{P}: \mathcal{H} \rightarrow \mathcal{H}$ be the orthogonal projection onto \mathcal{H}^{\prime}. Show that $\left\{\mathbb{P} \mathbf{e}_{k}\right\}_{k=1}^{N}$ is a tight frame for \mathcal{H}^{\prime}. Find the corresponding frame bound.

