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This lecture is an overview of the scattering transform. For details please see [1, 2] and [3, 4] for a
more complete treatment.

1 Signal representations for pattern recognition

A fundamental topic in image and audio processing is to find appropriate metrics to compare images
and sounds. One way to construct a metric is to use the Euclidean distance on a (nonlinear) signal
representation Φ, applied to signals x, x′:

d(x, x′) = ‖Φ(x)− Φ(x′)‖.

This puts all the structure of the problem in the construction of a signal representation, whose role
is to encode the relevant signal information and to capture the right notion of similarity for a given
task.

Object and sounds are perceived and recognized in the human brain in a fraction of a second,
under a variety of physical transformations, including translations, rotations, illumination changes
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or other deformations. The question is how to construct the signal representation Φ that would
be invariant to all these transformations, and at the same time preserve enough data about the
underlying signals such that important task, such as classification or image recognition can be
solved.

Scattering operators build invariant, stable, and informative signal representations by cascading
wavelet modulus decompositions followed by a lowpass averaging filter. Scattering representations
have the structure of a convolutional network. Rather than being learnt, the scattering network is
obtained from the invariance, stability, and informative requirements, which lead to wavelet filter
banks and to point-wise non-linearities.

2 Invariance and stability

Invariance to group action: Assume x ∈ L2(Rd). Let G denote a group of transformations
(translations, rotations, etc.) of Rd and Lφx(u) = x(φ(u)) denote the action of an element φ ∈ G.
The invariance to the action of G is obtained by requiring

Φ(Lφx) = Φ(x) for all φ ∈ G and x ∈ L2(Rd).

We will say that Φ(x) are the features of the signal x.

In this lecture, we will primarily be interested in building a representation that is invariant to
translation. Let xc(u) = x(u− c) denote the translation of signal x(·) by c ∈ Rd. Then, we want:

Φ(xc) = Φ(x) for all c ∈ Rd and x ∈ L2(Rd).

The theory can be generalized to other groups as well. In practice, translation invariance means
the features corresponding to each one of the following images are identical:

Stability to deformations: A diffeomorphism, denoted φ ∈ Diff(Rd), is a map φ : Rd → Rd that
is differentiable and has a differentiable inverse. For example, here is the image of a rectangular
grid on a square under a diffeomorphism from the square onto itself:
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Stability to deformations is expressed as a Lipschitz continuity condition with respect to a metric
‖φ‖ on the space of diffeomorphisms measuring the amount of deformation:

‖Φ(Lφx)− Φ(x)‖ ≤ C‖x‖‖φ‖, φ ∈ Diff(Rd) and x ∈ L2(Rd).

In practice, stability to deformations means that the feature corresponding to each of these images
are close together:

Note that if the diffeomorphism is large, it may convert an image of digit 1 to the an image of digit
2:

This example shows that in general we want stability with respect to small diffeomorphisms only.

We will be interested in small diffeomorphisms that are not too far from the identity transforma-
tion. It is convenient to represent such diffeomorphism as u → u − τ(u), where τ(u) is a vector
displacement field satisfying ‖∇ τ‖∞ < 1. The diffeomorphism acts on x ∈ L2(Rd) by composition:

L[τ ]x(u) = x(u− τ(u))
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3 Why not Fourier modulus?

Translation invariant representation can be obtained from Fourier modulus operator. However, the
resulting representations are not Lipschitz continuous to deformations, as we will see next.

Let x̂(ω) be the Fourier transform of x(u). Since x̂c(ω) = e−icω̇x̂(w), it results that |x̂c| = |x̂|
does not depend upon c. We see that the feature representation Φ(x) = |x̂(w)| is invariant to
translations, as desired.

However, Fourier transform modulus is unstable to small deformations at high frequencies. This
can be seen as follows. Let x(u) = eiεuθ(u) be a modulated version of a lowpass window θ(u) with
the central frequency at ε. Let τ(u) = su denote a linear displacement (difformation) field where
|s| is small. Then the deformed version of x is

xτ (u) = Lτx(u) = x((1 + s)u)

has the central frequency at (1 + s)ε. If σ2
θ =

∫
|ω|2 |θ(ω)|2 dω measures the frequency spread of θ,

then

σ2
x =

∫
|ω − ε|2 |x̂(ω)|2 dω = σ2

θ ,

and

σ2
xτ = (1 + s)−d

∫
(ω − (1 + s)ε)2

∣∣x̂((1 + s)−1ω)
∣∣2 dω

=

∫
|(1 + s)(ω − ε)|2 |x̂(ω)|2 dω = (1 + s)2σ2

x.

It follows that if the distance between the central frequency of x and xτ , sε, is large compared to
their frequency spreads, (2 + s)σs, then the frequency supports of x and xτ are nearly disjoint:

and hence
‖|x̂τ | − |x̂|‖ ∼ ‖x‖,

which shows that Φ(x) = |x̂| is not Lipschitz continuous to deformations since ε can be arbitrarily
large.

In contrast, remember that the wavelet transform coefficients can be understood in the frequency
domain as averaging operations with the windows that look as follows in the time-frequency plane:
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Therefore, at high frequencies, the wavelet transform provides averaging with wide windows:∫
Rd

(x ?ψλ)(u)du =

∫
Rd
x(t)ψλ(u− t)dt,

which in the Fourier domain is equal to:

x̂(ω)ψ̂λ(ω).

Scattering transform is a multi-layer network that is based on convolutions with wavelets. Because
wavelets become wider in the frequency domain at high frequencies, the representation is stable to
deformations.

Besides deformation instabilities, the Fourier modulus looses too much information. For example,
a Dirac delta δ(u) and a linear chirp eiu2 are two signals having Fourier transforms whose moduli
are equal and constant.

4 The scattering representation

Scattering representations construct invariant, stable, and informative signal representations by
cascading wavelet modulus decompositions followed by a lowpass filter. A wavelet decomposition
operator at scale J is defined as

Wλx(u) = x ?ψλ(u) =

∫
x(v)ψλ(u− v)dv.

where and ψλ(u) = 2−djψ(2−jr−1u) and λ = 2jr, with j < J and r ∈ G belongs to a finite rotation
group G of Rd. We say, λ ∈ ΛJ where ΛJ = {2jr : r ∈ G/{±1}, |λ| ≤ 2J}. Each rotated and
dilated wavelet thus extracts the energy of x located at a given scale and orientation given by λ.
As a side remark, note that the larger j is, the wider ψλ(u) is.

The difficulty is that the wavelet coefficients are not translation invariant. We could obtain try to
build a translation invariant representation by averaging the coefficients over Rd. However such
averaging does not produce any information because wavelets have zero-mean:∫

Rd
(x ?ψλ)(u)du =

∫
Rd

∫
Rd
x(t)ψλ(u− t)dtdu =

∫
Rd
x(t)

(∫
Rd
ψλ(u− t)du

)
︸ ︷︷ ︸

0

dt = 0.
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A translation invariant measure can be extracted out of each wavelet sub-band λ by introducing a
non-linearity which restores a non-zero, informative average value. This is for instance achieved by
computing the complex modulus and averaging the result∫

|x ?ψλ| du.

The information lost by this averaging is recovered by a new wavelet decomposition

{|x ?ψλ| ?ψ′λ}λ′∈ΛJ

of |x ?ψλ|, which produces new invariants by iterating the same procedure.

Let U [λ]x = |x ?ψλ| denote the wavelet modulus operator corresponding to the subband λ. Any
sequence p = (λ1, λ2, . . . , λm) defines a path, i.e., the ordered product of non-linear and non-
commuting operators

U [p]x = U [λm] . . . U [λ2]U [λ1]x = |||x ?ψλ1 | ?ψλ2 | . . . ? ψλm |

with U [0]x = x.

Many applications in image and audio recognition require locally translation invariant representa-
tions, which also keep spatial or temporal information intact beyond a certain scale 2J . A windowed
scattering transform computes a locally translation invariant representation by computing a lowpass
average at scale 2J with a lowpass filter φ2J (u) = 2−2Jφ(2−Ju). For each path p = (λ1, . . . , λm)
with λi ∈ ΛJ we defined the windowed scattering transform as

SJ [p]x(u) = U [p]x ?φ2J (u) =

∫
U [p]x(v)φ2J (u− v)dv.

A Scattering transform has the structure of a convolutional network, but its filters are given by
wavelets instead of being learned:

5 The scattering representation for images

To make the presentation more concrete, let’s consider the special case of scattering transform for
images. We start with a Morlet wavelet

ψ(u) = α(eiu.ε − β)e−|u|
2/(2σ2)
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where β � 1 is adjusted so that
∫
ψ(u)du = 0. Here is the real part of ψ, the imaginary part of ψ,

and the Fourier modulus of
∣∣∣ψ̂(ω)

∣∣∣ for a ε = (0, 3π/4), which encodes the angle:

For a fixed position u, windowed scattering coefficients SJ [p]x(u) of order m = 1, 2 are displayed
as piecewise constant images over a disk representing the Fourier support of the image x. This
frequency disk is partitioned into sectors {Ω[p]} indexed by the path p. The image value is SJ [p]x(u)
on the frequency sectors Ω[p] shown in the image below:

For m = 1, a scattering coefficient SJ [λ1]x(u) depends upon local Fourier transform energy of x over
the support of ψ̂λ1 . Its values is displayed over a sector Ω[λ1] which approximates the frequency
support of ψ̂λ1 . For λ1 = 2−j1r1, there are K rotated sectors located in an annulus of scale 2−j1 ,
corresponding to each r1 ∈ G, as shown in the image on the left. The area are proportional to
‖ψλ1‖2 ∼ K−12−j1 .

Second order scattering coefficients SJ [λ1, λ2]x(u) are computed with a second wavelet transform
which performs a second frequency subdivision. These coefficients are displayed over frequency
sectors Ω[λ1, λ2] which subdivide the sectors Ω[λ1] of the first wavelets ψ̂λ1 , as illustrated in the
image on the right. For λ2 = 2−j2r2, the scale 2j2 divides the radial axis and the resulting sectors
are subdivided into K angular sectors corresponding to the different r2. The scale and the angular
subdivisions are adjusted so that the area of each Ω[λ1, λ2] is proportional to ‖|ψλ1 | ?ψλ2‖2.
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6 Energy propagation

The table below shows the percentage of energy
∑
p of length m‖SJ [p]x‖2/‖x‖2 of scattering co-

efficients on frequency-decreasing paths of length m, depending upon J . The average values are
computed on the Caltech-101 database, with zero mean and unit variance images:

The propagated energy ‖U [p]x‖2 decays because U [p]x is a progressively lower frequency signal as
the path length increases. Indeed, each modulus computes a regular envelop of oscillating wavelet
coefficients. The modulus can thus be interpreted as s non-linear “demodulator” which pushes
the wavelet coefficient energy towards lower frequencies. To understand consider a hi-pass signal
f ?ψλ:

Then the Fourier transform of its modulus squared

F(|f ?ψλ|2) = F(f ?ψλ) ?F(f ?ψλ) = Rf̂ ψ̂λ(ω)

which is supported on the interval [−2R, 2R]:

Fourier transform of the modulus (without the square), is concentrated on [−2R, 2R], but it’s
support is wider:
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As a result, an important portion of the energy of U [p]x is then captured by the low pass filter φ2J

which outputs SJ [p]x = U [p]x ?φ2J . Hence fewer energy is propagated to the next layer.

Another consequence is that the scattering energy propagates only along a subset of frequency
decreasing paths. Since the envelope |x ?φλ| is more regular than x ?φλ it results that |x ?φλ| ? φ′λ
is non-negligible only if φ′λ is located at lower frequencies that φλ, i.e. when |λ′| < |λ|. Iterating on
wavelet modulus operators thus propagates the scattering energy along frequency-decreasing paths
p = (λ1, . . . , λm) where |λk| < |λk−1| for 1 ≤ k < m. Scattering coefficients along other path have a
negligible energy. Numerically, it is therefore sufficient to compute the scattering transform along
frequency-decreasing path only.

We see from the table above that most of the energy of scattering coefficients is concentrated in
the first two layers. Here are the first two layers of scattering coefficients computed locally for an
image from MNIST database:

7 Inverting the scattering transform

Preserving energy does not imply that the signal information is preserved. Since a scattering
transform is calculated by iteratively applying U, inverting SJ requires to invert U. The wavelet
transform W is a linear invertible operator, so inverting Uz = {z ? φ2J , |z ?ψλ|} amounts to recov-
ering the complex phases of wavelet coefficients removed by the modulus. The phase of Fourier
coefficients cannot be recovered from their modulus in general, but wavelet coefficients are redun-
dant, as opposed to Fourier coefficients. For particular wavelets, it has been proven that the phase
of wavelet coefficients can be recovered from their modulus, and that U has a continuous inverse.

Still, one can not exactly invert SJ because we discard information when computing the scattering
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coefficients SJ [p]x = U [p] ? φ2J of the last layer. Indeed, the propagated coefficients |U [p]x ?ψλ| of
the next layer are eliminated, because they are not invariant and have a negligible total energy.
Initializing the inversion by assuming that the small coefficients in the last layer are zero produces
an error. Numerical experiments on audio signals indicate that the scattering transform can be
inverted successfully with good accuracy from m = 2 layers. Importantly, when the invariant scale
2J becomes too large, the number of second order coefficients becomes too small, and accurate
reconstruction becomes impossible. This is expected, because when 2J is large, scattering transform
destroys the information about the global position of objects.

8 Each layer is a frame expansion

Each layer in the scattering network thus consists of a filter bank:

WJx = {x ?φJ , (Wλx)λ∈ΛJ}.

Its norm is defines as
‖WJx‖2 = ‖x ?φJ‖2 +

∑
λ∈ΛJ

‖Wλx‖2.

The filter bank defines a frame of L2(Rd) whose bounds are characterized by the following Littlewood-
Paley condition:

Theorem 1. If there exists ε > 0 such that for almost all ω ∈ Rd and all J ∈ Z

1− ε ≤
∣∣∣φ̂(2Jw)

∣∣∣2 +
1

2

∑
j≤J

∑
r∈G

∣∣∣ψ̂(2jrw)
∣∣∣2 ≤ 1,

then WJ is a frame with bounds given by:

(1− ε)‖x‖2 ≤ ‖WJx‖2 ≤ ‖x‖2, x ∈ L2(Rd). (1)

9 Energy conservation

The windowed scattering representation is obtained by cascading a basic propagator operator,

UJ = {x ?φ2J , |U [λ]x|λ∈ΛJ
}

The propagator UJ is non-expansive, since the wavelet transform decompositionWj is nonexpansive
from (1) and the modulus is also nonexpansiv (‖|a| − |b|‖ ≤ ‖a− b‖). As a result,

‖UJx− UJx
′‖2 = ‖x ?φj − x′ ? φj‖2 +

∑
λ∈ΛJ

‖|Wλx| −
∣∣Wλx

′∣∣‖2 ≤ ‖x− x′‖2
For any path set Ω, the Euclidean norm defined by the scattering coefficients SJ [p], p ∈ Ω is

‖SJ [Ω]x‖2 =
∑
p∈Ω

‖SJ [p]x‖2.

We denote PJ the set of paths of any order up to scale 2J , PJ = ∪mΛmJ . Since SJ [PJ ] is constructed
by cascading the non-expansive propagator UJ , it results that SJ [PJ ] is also non-expansive:
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Theorem 2. The windowed scattering transform is non-expansive:

‖SJ [PJ ]x− SJ [PJ ]x′‖ ≤ ‖x− x′‖ for all x, x′ ∈ L2(Rd).

In fact more is true: the scattering transform also preserves the signal energy, thus showing that
all high-frequency infromation is encoded in scattering coefficients:

Theorem 3. A scattering wavelet ψ is said to be admissible if there exists η ∈ Rd and ρ ∈ L2(Rd) ≥
0, with |ρ̂(ω)| ≤

∣∣∣φ̂(2ω)
∣∣∣, ρ̂(0) = 1, such that the function

Ψ̂(ω) = |ρ̂(ω − η)|2 −
∞∑
k=1

k
(

1−
∣∣∣ρ̂(2−k(ω − η))

∣∣∣)
satisfies

inf
1≤|w|≤2

∞∑
j=−∞

∑
r∈G

Ψ̂(2−jr−1ω)
∣∣∣Ψ̂(2−jr−1ω)

∣∣∣ > 0. (2)

If ψ satisfies the frame condition (1) with ε = 1 and is admissible, then for all x ∈ L2(Rd):

lim
m→∞

‖U [ΛmJ ]‖2 = lim
m→∞

∑
n≥m
‖SJ [ΛnJ ]x‖2 = 0,

and
‖SJ [PJ ]x‖ = ‖x‖.

The proof of the theorem relies on the effect explained above that the scattering energy propa-
gates progressively towards the low frequencies, thanks to the demodulation effect of the complex
modulus.

10 Translation invariance

Theorem 4. Let xc(u) = x(u− c). Then for admissible scattering wavelets satisfying (2) we have:

lim
J→∞

‖SJ [PJ ]x− SJ [PJ ]xc‖ = 0

for all x ∈ L2(Rd) and all c ∈ Rd.

It is important to pay attention to the following. We see that scattering transform is invariant to
translations. Therefore, if x and xc are translations of one another, then SJx = SJxc and therefore
‖SJx− SJxc‖ = 0. How is this consistent with energy conservation ‖SJ(x− xc)‖ = ‖x− xc‖ 6= 0?
If SJ was a linear operator, we would have 0 = ‖SJx − SJxc‖ = ‖SJ(x − xc)‖ 6= 0. However,
importantly SJ is nonlinear and can simultaneously be translation invariant and energy preserving.
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11 Lipschitz continuity to deformations

Theorem 5. For any compact set Ω ∈ Rd there exists C such that for all x ∈ L2(Rd) supported
in Ω with ‖U [PJ ]x‖1 <∞ and for all τ ∈ C2(Rd) with ‖∇ τ‖∞ ≤ 1

2 , then

‖SJ [PJ,m]L[τ ]x− SJ [PJ,m]x‖ ≤ C‖U [PJ ]x‖1 (2−J‖τ‖∞ + ‖∇ τ‖∞ + ‖Hτ‖∞)︸ ︷︷ ︸
norm of diffeomorphism

where PJ,m = ∪n<mΛnJ and H is the Hessian.

This theorem shows that the size of the effect a diffeomorphism produces in the scattering domain is
bounded by a term proportional to 2−J‖τ‖∞, which corresponds to the local translation invariance,
plus a deformation error proportional to ‖∇ τ‖∞.

Stability to deformations is illustrated as follows:

In the two images the dots move by more than their size, but the scattering transform barely
changes. A better illustraction can be found here: https://www.di.ens.fr/data/scattering/

image/
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