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Agenda:

1. Singular value decomposition (SVD)

2. Dimensionality reduction and SVD

3. Principal component analysis (PCA)

4. Link between SVD and PCA

1 Singular value decomposition

Recall that if A ∈ Rm×n, then there exist orthogonal matrices

U = [u1, . . . ,um] ∈ Rm×m and V = [v1, . . . ,vm] ∈ Rn×n

such that
UTAV = Σ = diag (σ1, . . . , σp) ∈ Rm×n, p = min(m,n)

and
A = UΣVT (1)

where σ1 ≥ σ2 ≥ . . . ≥ σp ≥ 0 and diag (σ1, . . . , σp) is a not-necessarily square matrix with
σ1, . . . , σp on the main diagonal and zeros everywhere else. σi are called singular values of A and
the vectors ui and vi are the corresponding ith left and right singular vectors, respectively.

The decomposition in (1) is called the Singular Value Decomposition (SVD) of A.

If r = rankA, then
σ1 ≥ σ2 ≥ . . . ≥ σr ≥ σr+1 = . . . = σp = 0

and the SVD decomposition of A can be written as

A =
r∑
i=1

σiuiv
T
i . (2)

2 Dimensionality reduction and SVD

If the data can be modeled by an approximately low-rank model, then SVD can be used for
dimensionality reduction on the data. This application is based on the following result.
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Theorem 1. Let the SVD of A = UΣVT. If k < r = rank(A) and

Ak =
k∑
i=1

σiuiv
T
i ,

then
min

B:rankB=k
‖A−B‖op = ‖A−Ak‖op = σk+1

where ‖A‖op denotes the operator norm of A that is equal to its largest singular value.

Proof. Since UTAkV = diag (σ1, . . . , σk, 0, . . . , 0), in follows rank(Ak) = k and UT(A −Ak)V =
diag (0, . . . , 0, σk+1, . . . σp). Therefore, ‖A−Ak‖ = σk+1.

Now suppose B ∈ Rm×n and rankB = k. It follows that there is an orthonormal basis {q1, . . . ,qn−k}
so that N (B) = span{q1, . . . ,qn−k}. It follows that

span{q1, . . . ,qn−k} ∩ span{v1, . . . ,vk+1} 6= {0}.

This means that there exist unit l2-norm vectors z so that Bz = 0 which can be written as a
linear combination z =

∑k+1
i=1 αivi with

∑k+1
i=1 α

2
i = 1 and αi = vT

i z. Since Bz = 0 and, as follows
from (2)

Az =

k+1∑
i=1

σi(v
T
i z)ui

we have

‖A−B‖2op ≥ ‖(A−B)z‖22 = ‖Az‖22 =

k+1∑
i=1

σ2i (v
T
i z)2 ≥ σ2k+1

k+1∑
i=1

α2
i = σ2k+1

which completes the proof.

We can use the theorem to reduce dimensionality of data. Assume we have n data points x(1), . . . ,x(n),
x(i) ∈ Rm. Let’s stack the samples as columns of X = [x(1), . . . ,x(n)]. Then, the best rank-k ap-
proximation of the data, X, is given by

Xk = UkΣkV
T
k .

The approximation is composed of the k largest singular vectors of X and the corresponding singular
vectors. When does this approximation makes sense?

3 Principal component analysis (PCA)

The approximation makes sense, if there are reasons to believe that the smallest singular values
and the corresponding singular vectors may correspond to noise.

For example, suppose that x(1), . . . ,x(n), x(i) ∈ Rm correspond to attributes of n different types of
automobiles, such as their maximum speed, turn radius, and so on. Let x(i) ∈ Rm for each i with

m � n. But unknown to us, two different attributes, x
(i)
k and x

(i)
l , give a car’s maximum speed
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measured in miles per hour, and the maximum speed measured in kilometers per hour. These
two attributes are therefore almost linearly dependent, up to only small differences introduced by
rounding off to the nearest mph or kph. Thus, the data really lies approximately on an n − 1
dimensional subspace. Can we automatically detect and remove this redundancy?

A more realistic example may be the following. Consider a dataset resulting from a survey of

pilots for radio-controlled helicopters, where x
(i)
1 is a measure of the piloting skill of pilot i, and x

(i)
2

captures how much he/she enjoys flying. Because RC helicopters are very difficult to fly, only the
most committed students, ones that truly enjoy flying, become good pilots. So, the two attributes,
x1 and x2 are strongly correlated. Indeed, we might posit that the data actually lies along some
diagonal axis (the w1 direction) capturing the intrinsic piloting “karma” of a person, with only a
small amount of noise lying off the axis:

How can we automatically compute this w1 direction? This can be done using the PCA algorithm.
Prior to running PCA, we typically standardize the data as follows.

1. Compute the mean data vector µ = 1
n

∑n
i=1 x

(i).

2. Replace each x(i) with x(i) − µ.

3. Compute the sample variance of each feature in the data σ2j = 1
n

∑n
i=1(x

(i)
j )2.

4. Replace each x
(i)
j with x

(i)
j /σj .

Steps 1 and 2 rescale the data to have zero mean. Steps 3 and 4 rescale each feature to have unit

variance, which ensures that all features are treated on the same scale. For instance, if x
(i)
1 is the

maximum speed of a car in kmh and x
(i)
2 is the number of seats in the car (2 to 4), then steps 3

and 4 rescale these two attributes to make them comparable.

After normalization, how do we compute the major axis of variation w of the data, that is the
direction on which the data approximately lies? One way to pose this problem is as finding the
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unit vector w so that when the data is projected onto the direction corresponding to w, the
variance of the projected data is maximized. Intuitively, the data starts off with some amount of
variance/information in it. We would like to choose a direction, w so that if we were to approximate
the data as lying in the direction/subspace corresponding to w, as much as possible of this variance
is still retained.

Consider the following dataset, on which we have already carried out the normalization steps:

Now, suppose we pick w as follows:

The circles denote the projection of the original data onto this line. We see that the projected data
still has a fairly large variance, and the points tend to be far from the origin. In contrast suppose
we had instead picked the following direction:
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Here, the projections have a significantly smaller variance, and are much closer to the origin.

We would like to automatically select the direction w corresponding to the first of the two figures
shown above. To formalize this, note that given a unit vector w and a point x, the length of the
projection of x onto w is given by xTw. Therefore, if x(i) is a point in our dataset (one of the
crosses in the plot), then its projection onto w (the corresponding circle in the figure) is distance
(x(i))Tw from the origin. Hence, to maximize the variance of the projections, we would like to
choose a unit-length w, ‖w‖2 = 1, so as to maximize:

1

n

n∑
i=1

((x(i))Tw)2 =
1

n

n∑
i=1

wTx(i)(x(i))Tw

= wT

(
1

n

n∑
i=1

x(i)(x(i))T

)
w

= wT 1

n
XXT︸ ︷︷ ︸
S

w

where S is called the covariance matrix of the data.

We need to solve the following optimization problem:

w = arg max
ŵ

ŵTSŵ subject to ŵTŵ = 1. (3)

This is a constraint optimization problem. To solve it, we can compute the Lagrangian

L(ŵ, λ) = ŵTSŵ − λ(ŵTŵ − 1)

and set its gradient to zero:
∇ŵ L(ŵ) = 0⇔ Sŵ − λŵ = 0

to obtain
Sŵ = λŵ. (4)
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This means that w is an eigenvector of S and the Lagrangian multiplier λ is the corresponding
eigenvalue. S is a symmetric positive semi-definite matrix, hence all of its eigenvalues are non-
negative. What pair of eigenvalue and eigenvector should we choose? Plugging (4) into (5) we
find that ŵTSŵ = λ2 is maximized if we choose λ to be the largest eigenvalue of S, and ŵ is the
corresponding eigenvector. This vector is also called the principal axis of the data.

More often than not we want to find more than one feature. This is done recursively. Suppose
that we have already found the directions w1, . . . ,wd−1. Now we want to find new directions onto
which we project the original data, wd, such that it is orthogonal to all previous directions and the
variance of the projection onto wd is as large as possible. The optimization problem we want to
solve now becomes:

wd = arg max
ŵd

ŵT
d Sŵd subject to ŵT

d ŵd = 1, wT
i ŵd = 0 for i < d. (5)

The Lagrangian of this problem is:

L(ŵ, λ) = ŵT
d Sŵd − λd(ŵT

d ŵd − 1)−
d−1∑
i=1

λiŵ
T
dwi

and set its gradient to zero:
∇ŵd

L(ŵd) = 0

and therefore

Sŵd − λdŵd −
d−1∑
i=1

λiwi = 0. (6)

We will prove by induction that wi are eigenvectors of S for all 1 ≤ i ≤ d. Assume that wi

are eigenvectors of S for 1 ≤ i < d. Let’s prove that wd also is an eigenvector of S. From the
assumption that wi are eigenvectors of S for all 1 ≤ i ≤ d we can derive that λi = 0 for 1 ≤ i < d
as follows. Multiply (7) by wT

j on the left:

wT
j Sŵd︸ ︷︷ ︸

λ(S)jwT
j ŵd=0

−λdwT
j ŵd︸ ︷︷ ︸
0

−
d−1∑
i=1

λiw
T
j wi︸ ︷︷ ︸
δij

= 0,

so that λi = 0 for 1 ≤ i < d. Therefore, (7) is equivalent to

Sŵd = λdŵd, (7)

we conclude that wd is an eigenvector of S, which completes the induction step. Applying exactly
the same argument as before, by induction, we conclude that the eigenvalue corresponding to wd

is the d-th largest eigenvalue of S.

To conclude, PCA transform looks for d orthogonal direction vectors (known as the principle axes)
such that the projection of input sample vectors onto the principle directions has the maximal
spread, or equivalently that the variance of the output coordinates is maximal. The principal
directions are the first (with respect to descending eigenvalues) d eigenvectors of the covariance
matrix XXT.
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4 PCA as optimal linear approximation

Assume that we are trying to find the optimal way to approximate the data matrix X using only
a small set of d vectors W = [w1, . . . ,wd]. The vectors in W are normalized as ‖wi‖2 = 1 but
otherwise arbitrary.

We are trying to approximate each xi using the columns of W, i.e. xi ≈Wyi = x̃i. The optimal co-
efficients are given by least squares: yi = (WTW)−1WTxi. Therefore, x̃i = W(WTW)−1WTxi =
WWTxi, where we used that ‖wi‖2 = 1.

The optimal W is the solution of

W = arg min
Ŵ

1

2

n∑
i=1

‖xi − x̃i‖22

= arg min
Ŵ

‖X− ŴŴTX‖2F

= arg min
Ŵ

tr
(

(X− ŴŴTX)T(X− ŴŴTX)
)

= arg min
Ŵ

tr
(
XTX

)
− tr

(
ŴTXXTŴ

)
= arg max

Ŵ

tr
(
ŴTXXTŴ

)
subject to ŴTŴ = I which is equivalent to the optimization problem (??).

5 Link between SVD and PCA

We investigate the relationship between PCA and SVD on a set of centralized data stored in
matrix X. The projection basis of PCA is given by the r eigenvectors of the covariance matrix:

XXT = WrΛrW
T
r . (8)

Assume that the SVD decomposition of

X = UrΣrV
T
r .

Therefore, the covariance matrix can be written as

XXT = UrΣrV
T
rVrΣ

T
rU

T
r = UrΣ

2
rU

T
r .

Comparing to (8), we find that Wr = Ur and Λr = Σ2
r .
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