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Agenda:

1. Sampling at information rate

2. How to choose the measurement matrix?

3. The Restricted Isometry Property (RIP) and signal recovery

4. The Johnson-Lindenstrauss Lemma

5. Verifying the RIP from concentration inequalities

1 Sampling at information rate

In signal separation problems we did not have control over designing the dictionary D. The dictio-
nary was determined by the nature of separation problem under consideration.

In super-resolution problems we also did not have control over the dictionary D. The dictionary
was the low-frequency part of the Fourier matrix.

As we will see, in Compressed Sensing we have a lot of control on how we design D. This will allow
us to break the square-root bottleneck and also the non-negativity constraints as in super-resolution
will not be necessary.

Consider a typical sensing pipeline:
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103 106

sorted wavelet coefficients

Typically, we obtain a graph similar to the figure above when plotting the amplitude of the sorted
wavelet coefficients when we sample natural images. Hence, 103−106 of the costly acquired wavelet
coefficients are thrown away in the process of compression. It is therefore important to ask whether
we cannot just acquire the information that will not end up being thrown away.

In many problems of practical importance we can perform generalized measurement. One general-
ized measurement is simply an inner product between the signal we try to recover and a (known)
measurement vector. If we stack the measurement vectors into rows of a matrix, we obtain the
measurement matrix. We would like to take fewer measurements than the dimensionality of the
signal. For example, if the signal is sparse in the wavelet domain, we would like the number of
measurements to be proportional to the sparsity level of the signal. In other words the generalized
measurement matrix is fat. The generalized measurement pipeline is structured as follows:

= measurement matrix wavelet basis

y

x

To reduce the generalized measurement pipeline to the setup we studied so far, define:
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D = measurement matrix sparsity basis

For a given sparsity basis (e.g., wavelets), we want to find a sampling basis such that the resulting
matrix D admits successful recovery of all s-sparse vectors.

2 How to choose the measurement matrix?

Consider the example of spectrally sparse signals.

D . . . m× n

FH

x . . . n× 1

y . . . m× 1

=

m measurements in the time-domain spectrum

s nonzero components

In the Figure above

F =
1√
n


1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

...
. . .

...

1 ωn−1 ω2(n−1) · · · ω(n−1)2


is the n× n DFT matrix and ωn = e−2πi/n.

In terms of the generalized measurement pipeline, this example can be rewritten as follows:
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FH=

= I FH

observation

Above, the matrix FH is the sparsity basis. In this basis the signal has a sparse representation.
The identity matrix with removed columns is the measurement matrix.

We can apply the following universal sampling pattern. Choose the first m = 2s rows of F. In
principle, x is now uniquely determined by measurements y. To see this, assume that there are two
s-sparse vectors x1 6= x2 that satisfy Dx1 = Dx2. Therefore, ‖D (x1 − x2)‖2 = 0. Let Si denote
the support of xi, i = 1, 2 and S = S1∪S2. The matrix DS is a square matrix Vandermonde matrix.
Therefore it is fullrank with rank 2s. Thus, it is invertible and we conclude that x1 − x2 = 0. So
that x1 = x2. Note that we did not provide a recovery algorithm, but we proved that the recovery
is possible in principle.

Would this work for every choice of sparsity basis and sampling matrix?

Since we require the compressive sensing scheme to be universal, recovery must be possible inde-
pendently of the s-sparse signal vector x. In the example depicted below, this is clearly not the
case.

0
0
0

= I I

y
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nonadaptive sampling instants

Spikes and sinusoids are incoherent. Spikes and spikes are not incoherent.

We conclude that if the measurement matrix and the sparsity basis are sufficiently incoherent, the
resulting matrix D might have low coherence, µ(D). Hence, we might be able to use the theory we
derived earlier to get a recovery guarantee for all s-sparse signals. However, as we discussed, the
coherence-based deterministic bounds can only provide recovery guarantee up to the sparsity level
s .
√
m, which is very pessimistic. In the special case of super-resolution of positive signals we have

seen that recovery is possible for s ∝ m. Next we study the signal recovery theory based on the
resticted isometry property (RIP). This theory allows us to obtain recovery guarantees for s ∝ m
for a large class of dictionaries, D, in which the sampling basis is random or partially random.

3 The RIP and signal recovery

We present the theory developed by E. J. Candès [1]. Assume that we observe y = Dx ∈ Rm,
where x ∈ Rn is a signal, unknown to us and that we want to reconstruct, and D ∈ Cm×n is a
known measurement matrix. Here, we consider the underdetermined case with fewer equations
than unknowns, i.e., m < n.

Definition 1. For each integer s = 1, 2, . . ., define the isometry constant δs of a matrix D as the
smallest number such that

(1− δs) ‖x‖22 ≤ ‖Dx‖22 ≤ (1 + δs) ‖x‖22

holds for all s-sparse vectors x. A vector is said to be s-sparse if it has at most s nonzero entries.

We denote the best s-sparse approximation to an arbitrary vector x by xs, i.e. xs is the vector x
with all but the s-larges entries (in absolute value) set to zero.
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Theorem 1 (Noiseless recovery). Assume that δ2s <
√

2− 1. Then, the solution x∗ to

find arg min‖x̂‖1 subject to Dx̂ = y

obeys
‖x∗ − x‖1 ≤ C0 ‖x− xs‖1

and
‖x∗ − x‖2 ≤ C0s

−1/2 ‖x− xs‖1
for some constant C0 given explicitly below. In particular, if x is s-sparse, recovery is exact.

Theorem 2 (Noisy recovery). Assume that δ2s <
√

2− 1 and ‖n‖2 ≤ ε. Then, the solution x∗ to

find arg min
x̂∈Rn

‖x̂‖1 subject to ‖y −Dx̂‖2 ≤ ε

obeys
‖x∗ − x‖2 ≤ C0s

−1/2 ‖x− xs‖1 + C1ε

with the same constant C0 as before and some constant C1 given explicitly below.

Proofs

Lemma 3. We have ∣∣〈Dv,Dv′
〉∣∣ ≤ δs+s′ ‖v‖2 ∥∥v′∥∥2

for all v, v′ supported on disjoint subsets T , T ′ ⊆ {1, . . . , n} with |T | ≤ s and |T ′| ≤ s′.

Proof. Without loss of generality, let us assume that ‖v‖2 = ‖v′‖2 = 1. By definition of the
restricted isometry constant δs+s′ , it holds that∥∥v ± v′

∥∥2
2

(1− δs+s′) ≤
∥∥D(v ± v′)

∥∥2
2
≤
∥∥v ± v′

∥∥2
2

(1 + δs+s′).

Since v and v′ are disjointly supported and ‖v‖2 = ‖v′‖2 = 1 by assumption, we have∥∥v ± v′
∥∥2
2

= ‖v‖22 +
∥∥v′∥∥2

2
= 2.

It follows that
2(1− δs+s′) ≤

∥∥D(v ± v′)
∥∥2
2
≤ 2(1 + δs+s′).

Applying the polarization identity〈
u,u′

〉
=

1

4

(∥∥u + u′
∥∥2
2
−
∥∥u− u′

∥∥2
2

)
to u = Dv and u′ = Dv′, we obtain∣∣〈Dv,Dv′

〉∣∣ =
1

4

∣∣∣∥∥Dv + Dv′
∥∥2
2
−
∥∥Dv −Dv′

∥∥2
2

∣∣∣ .
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Resolving | · | such that arg > 0 yields∣∣〈Dv,Dv′
〉∣∣ =

1

4

(∥∥Dv + Dv′
∥∥2
2
−
∥∥Dv −Dv′

∥∥2
2

)
≤ 1

4
· 2(1 + δs+s′)−

1

4
· 2(1− δs+s′))

=
1

2
(1 + δs+s′ − 1 + δs+s′) = δs+s′ .

Resolving | · | such that arg < 0 yields∣∣〈Dv,Dv′
〉∣∣ =

1

4

(∥∥Dv −Dv′
∥∥2
2
−
∥∥Dv + Dv′

∥∥2
2

)
≤ 1

4
· 2(1 + δs+s′)−

1

4
· 2(1− δs+s′))

=
1

2
(1 + δs+s′ − 1 + δs+s′) = δs+s′ .

Let us denote by xT the vector equal to x on the index set T and zero elsewhere. Let us first prove
the noisy case. We start with the basic observation:

‖D(x∗ − x)‖2 ≤ ‖Dx∗ − y‖2︸ ︷︷ ︸
≤ε(as x∗ is feasible)

+ ‖y −Dx‖2︸ ︷︷ ︸
=‖n‖2≤ε

≤ 2ε.

Write x∗ as x∗ = x + h, and decompose h into a sum of vectors hT0 ,hT1 , . . ., each of sparsity at
most s. T0 corresponds to the locations of the s largest coefficients of x, T1 to the locations of the
s largest (in absolute value) coefficients of hT c0 and so on. The proof proceeds in two steps:

1. the size of h outside T0 ∪ T1 is essentially bounded by that of h on T0 ∪ T1,

2. ‖hT0∪T1‖2 is approximately small.

For the first step, we note that for each j ≥ 2, we have∥∥hTj∥∥2 ≤ s1/2 ∥∥hTj∥∥∞ ≤ s−1/2 ∥∥hTj−1

∥∥
1

because s
∥∥hTj∥∥∞ ≤ ∥∥hTj−1

∥∥
1
. We therefore get∑

j≥2

∥∥hTj∥∥2 ≤ s−1/2 (‖hT1‖1 + ‖hT2‖1 + . . .)

≤ s−1/2
∥∥hT c0 ∥∥1 .

This gives the useful estimate

∥∥h(T0∪T1)c
∥∥
2

=

∥∥∥∥∥∥
∑
j≥2

hTj

∥∥∥∥∥∥
2

≤
∑
j≥2

∥∥hTj∥∥2 ≤ s−1/2 ∥∥hT c0 ∥∥1 . (1)
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The key point is that
∥∥hT c0 ∥∥1 cannot be very large as ‖x + h‖1 = ‖x∗‖1 is minimum. By applying

the reverse triangle inequality twice, we obtain

‖x‖1 ≥ ‖x + h‖1 =
∑
j∈T0

|xj + hj |+
∑
j∈T c0

|xj + hj |

≥ ‖xT0‖1 − ‖hT0‖1 +
∥∥hT c0 ∥∥1 − ∥∥xT c0 ∥∥1 .

This yields the following chain of inequalities

‖x‖1 − ‖xT0‖1 +
∥∥xT c0 ∥∥1 ≥ −‖hT0‖1 +

∥∥hT c0 ∥∥1
‖xT0‖1 +

∥∥xT c0 ∥∥1 − ‖xT0‖1 +
∥∥xT c0 ∥∥1 ≥ −‖hT0‖1 +

∥∥hT c0 ∥∥1
2
∥∥xT c0 ∥∥1 + ‖hT0‖1 ≥

∥∥hT c0 ∥∥1
2
∥∥xT c0 ∥∥1 + ‖hT0‖1 ≥ s

1/2
∥∥h(T0∪T1)c

∥∥
2
,

where the last inequality follows directly from (1). Using the fact that ‖hT0‖1 ≤ s1/2 ‖hT0‖2, this
becomes

2
∥∥xT c0 ∥∥1 + s1/2 ‖hT0‖2 ≥ s

1/2
∥∥h(T0∪T1)c

∥∥
2

2s−1/2
∥∥xT c0 ∥∥1 + ‖hT0‖2 ≥

∥∥h(T0∪T1)c
∥∥
2
.

By definition, xT c0 = x− xs. Therefore,

2 s−1/2 ‖x− xs‖1︸ ︷︷ ︸
=e0

+ ‖hT0‖2 ≥
∥∥h(T0∪T1)c

∥∥
2
.

Next, we bound
∥∥h(T0∪T1)c

∥∥
2

from above. We have the following

DhT0∪T1 = D

h−
∑
j≥2

hTj

 = Dh−
∑
j≥2

DhTj ,

which implies

‖DhT0∪T1‖
2
2 = 〈DhT0∪T1 ,Dh〉 −

〈
DhT0∪T1 ,

∑
j≥2

DhTj

〉
. (2)

The Cauchy-Schwarz inequality gives

|〈DhT0∪T1 ,Dh〉| ≤ ‖DhT0∪T1‖2 ‖Dh‖2 .

Moreover, it holds that

‖D (x∗ − x)︸ ︷︷ ︸
=h

‖2 ≤ ‖Dx∗ − y‖2 + ‖y −Dx‖2 ≤ 2ε,

which, combined with the definition of the restricted isometry constant, gives

|〈DhT0∪T1 ,Dh〉| ≤ ‖DhT0∪T1‖2 · 2ε

≤ 2ε
√

1 + δ2s ‖hT0∪T1‖2 . (3)

8



It follows from Lemma 3 that for all j, we have∣∣〈DhT0 ,DhTj
〉∣∣ ≤ δ2s ‖hT0‖2 ∥∥hTj∥∥2 . (4)

The sets T0 and T1 are disjoint, and therefore,

‖hT0‖2 + ‖hT1‖2 ≤
√

2 ‖hT0∪T1‖2 . (5)

This can be seen as follows:
‖hT0∪T1‖

2
2 = ‖hT0‖

2
2︸ ︷︷ ︸

=a2

+ ‖hT1‖
2
2︸ ︷︷ ︸

=b2

,

and we have √
2(a2 + b2) ≥ a+ b

2(a2 + b2) ≥ a2 + b2 + 2ab

a2 + b2 − 2ab ≥ 0

(a− b)2 ≥ 0.

Using the triangle inequality, (4), and (5), we obtain∣∣∣∣∣∣
〈

DhT0∪T1 ,
∑
j≥2

DhTj

〉∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
〈

DhT0 ,
∑
j≥2

DhTj

〉∣∣∣∣∣∣+

∣∣∣∣∣∣
〈

DhT1 ,
∑
j≥2

DhTj

〉∣∣∣∣∣∣
≤
∑
j≥2

δ2s (‖hT0‖2 + ‖hT1‖2)
∥∥hTj∥∥2

≤
√

2δ2s ‖hT0∪T1‖2
∑
j≥2

∥∥hTj∥∥2 . (6)

Combining (2), (3), (6) and using again the definition of the restricted isometry constant, we get

(1− δ2s) ‖hT0∪T1‖
2
2 ≤ ‖DhT0∪T1‖

2
2 ≤ ‖hT0∪T1‖2

2ε
√

1 + δ2s +
√

2δ2s
∑
j≥2

∥∥hTj∥∥2


Furthermore, we have ∑
j≥2

∥∥hTj∥∥2 ≤ s−1/2 ∥∥hT c0 ∥∥1
which implies

‖hT0∪T1‖2 ≤
2
√

1 + δ2s
1− δ2s︸ ︷︷ ︸

=α

ε+

√
2δ2s

1− δ2s︸ ︷︷ ︸
=ρ

s−1/2
∥∥hT c0 ∥∥1 = αε+ ρs−1/2

∥∥hT c0 ∥∥1 .
Note that we can divide by 1− δ2s because δ2s < 1.

‖hT0∪T1‖2 ≤ αε+ ρs−1/2
∥∥hT c0 ∥∥1

Using ∥∥hT c0 ∥∥1 ≤ ‖hT0‖1 + 2
∥∥xT c0 ∥∥1︸ ︷︷ ︸

=2‖x−xs‖1

,
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this becomes
‖hT0∪T1‖2 ≤ αε+ ρ s−1/2 ‖hT0‖1︸ ︷︷ ︸

≤‖hT0∪T1‖1

+ ρs−1/22 ‖x− xs‖1︸ ︷︷ ︸
2ρe0

.

This gives
‖hT0∪T1‖2 ≤ αε+ ρ ‖hT0∪T1‖2 + 2ρe0,

and therefore, since we assumed that δ2s <
√

2− 1, it holds that 1/(1− ρ) > 0, and we have

‖hT0∪T1‖2 ≤
αε+ 2ρe0

1− ρ
.

And finally
‖h‖22 = ‖hT0∪T1‖

2
2 +

∥∥h(T0∪T1)
∥∥2
2

‖h‖2 ≤ ‖hT0∪T1‖2 +
∥∥h(T0∪T1)c

∥∥
2

≤ ‖hT0∪T1‖2 + ‖hT0∪T1‖2 + 2e0

= 2 ‖hT0∪T1‖2 + 2e0 ≤ 2
αε+ 2ρe0

1− ρ
+ 2e0

= 2
αε+ 2ρe0 + e0 − e0ρ

1− ρ
= 2

αε+ e0ρ+ e0
1− ρ

= 2
αε+ e0(1 + ρ)

1− ρ
= 2

αε

1− ρ︸ ︷︷ ︸
=C1ε

+ 2
1 + ρ

1− ρ︸ ︷︷ ︸
=C0

s−1/2 ‖x− xS‖1

Lemma 4. Let h be any vector in the null space of D and let T0 be any set of cardinality s. Then,

‖hT0‖1 ≤ ρ
∥∥hλQc0∥∥1

with ρ =
√

2δ2s(1− δ−12s ).

Proof. We have

‖hT0‖1 ≤ s
−1/2 ‖hT0‖2 ≤ s

1/2 ‖hT0∪T1‖2
≤ s−1/2(ρs−1/2

∥∥hT c0 ∥∥1)
= ρ

∥∥hT c0 ∥∥1
∥∥hT c0 ∥∥1 ≤ ‖hT0‖1 + 2

∥∥xT c0 ∥∥1 ≤ 2

1− ρ
∥∥xT c0 ∥∥1

Therefore, in the noiseless case, we have

‖h‖1 = ‖hT0‖1 +
∥∥hT c0 ∥∥1 ≤ (ρ+ 1)

∥∥hT c0 ∥∥1
≤ 2

1 + ρ

1− ρ
∥∥xT c0 ∥∥1

= 2
1 + ρ

1− ρ
‖x− xs‖1 .
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4 The Johnson-Lindenstrauss Lemma

Suppose we are given a set U of m points in Rn. We would like to embed these points into a
lower dimensional Euclidean space (i.e., in Rk with k < n), while approximately preserving the
distances between the points in U . The Johnson-Lindenstrauss (JL) Lemma, stated below, shows
that any set of m points can be embedded in k = O(logm/ε2) dimensions while the distances
between any two points change by at most a factor of 1 ± ε. The JL Lemma, in particular, the
concentration of measure inequality from which the JL Lemma follows (as shown later), will turn
out to be an essential ingredient in proving the restricted isometry property (RIP) for random
matrices considered in class. As a reference for these notes, see [2, 3].

Lemma 5 (Johnson-Lindenstrauss Lemma). Choose ε with 0 < ε < 1 and suppose k satisfies

k ≥ 8

ε2 − ε3
log(2m). (7)

Then, for every set U of m points, there is a (linear) map f : Rn → Rk such that for all u,u′ ∈ U ,

(1− ε)
∥∥u− u′

∥∥2 ≤ ∥∥f(u)− f(u′)
∥∥2 ≤ (1 + ε)

∥∥u− u′
∥∥2 . (8)

The JL Lemma is essentially tight according to [4, Thm. 9.3].

For concreteness, set ε = 0.5, i.e., the distances between points may be reduced by no more than
50 percent, then k must be larger than 64 log(2m).

The original proof of the JL Lemma, as well as the proof discussed here, is based on random
projections. Essentially, it is shown that projecting an arbitrary m-point subset into a random
subspace only changes the inter-point distances by a factor of 1± ε with positive probability.

The JL Lemma will follow directly from the following concentration inequality. This concentration
inequality will be an essential ingredient for verifying the RIP for random matrices considered in
class.

Lemma 6. Let A ∈ Rk×n be a random matrix with i.i.d. N (0, 1/k) entries. Then, for ε with
0 < ε < 1 and a fixed u ∈ Rn,

P
(∣∣∣‖Au‖2 − E

[
‖Au‖2

]∣∣∣ ≥ ε ‖u‖2) < 2e−k
ε2−ε3

4 . (9)

Also:

E
[
‖Au‖2

]
= ‖u‖2 . (10)

In words, Lemma 6 states that the random variable ‖Au‖2 is concentrated around its expectation.
An equation of the form (9) is called “concentration of measure inequality” or simply “concentra-
tion inequality” in the literature. Lemma 6 is not restricted to Gaussian random matrices, but
generalizes to other random matrices. Essentially the same inequality holds if each entry ai,j of A

is i.i.d. sub-Gaussian, i.e., its tail probability satisfies P (|ai,j | > t) ≤ c1e−c2t
2

for constants c1, c2.

Before proving Lemma 6, we will show how it implies the JL Lemma.
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Proof of the JL Lemma. We will show that the (linear) map f(u) = Au with A ∈ Rk×n a random
matrix with i.i.d. N (0, 1/k) entries, satisfies (8) for all u,u′ ∈ U with non-zero probability.

Applying the union bound over all m(m − 1)/2 < m2 pairs of points in U , it follows from
Lemma 6 that (8) is violated for any pair of points (u,u′) with u,u′ ∈ U with probability less

than m22e−k
ε2−ε3

4 . If we take k as in (7), we obtain

k ≥ 4

ε2 − ε3
2 log(2m)⇔ −k ε

2 − ε3

4
≤ log(1/(4m2))⇔ m22e−k

ε2−ε3
4 ≤ 1/2.

This ensures f(u) = Au satisfies (8) with probability at least 1/2.

Observe: If we make k grow faster than 4
ε2−ε3 2 log(2m) as a function of m, by the same logic we

can demonstrate that f(u) = Au satisfies (8) with probability arbitrary close on one for large m.

Proof of Lemma 6. First observe that

E
[
‖Au‖2

]
= E

[
uTATAu

]
= uTE

[
ATA

]
u = uTIu = ‖u‖2

which proves (10).

Next, let aT
j be the j-th row of A, and set Xj =

√
k
‖u‖a

T
j u. Note that aT

j u is the sum of independent

Gaussians and is therefore ‖u‖N (0, 1/k) distributed. It follows that the Xj are i.i.d. N (0, 1)

distributed. Next set X =
∑k

j=1X
2
j . With this notation, we have

X =

k∑
j=1

X2
j =

k

‖u‖2
k∑
j=1

∣∣∣aT
j u
∣∣∣2 =

k

‖u‖2
‖Au‖2 .

Thus, for λ ≥ 0,

P
(
‖Au‖2 ≥ (1 + ε) ‖u‖2

)
= P (X ≥ (1 + ε)k)

= P
(
eλX ≥ eλ(1+ε)k

)
≤ 1

e(1+ε)kλ
E
[
eλX

]
(11)

=
1

e(1+ε)kλ

k∏
j=1

E
[
eλX

2
j

]
(12)

=
1

e(1+ε)kλ

(
E
[
eλX

2
1

])k
(13)

where we used Markov’s inequality1 for a nonnegative random variable in (11), independence of
the Xj for (12) and that all Xj have the same distribution for (13).

1For a nonnegative random variable X, P[X ≥ a] ≤ E[X]
a

.
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It remains to evaluate the moment generating function E
[
eλX

2
1

]
. Since X1 is N (0, 1) distributed,

E
[
eλX

2
1

]
=

∫ ∞
−∞

eλx
2 1√

2π
e−

x2

2 dx

=
1√

1− 2λ

∫ ∞
−∞

√
1− 2λ√

2π
e−

x2

2
(1−2λ)dx

=
1√

1− 2λ
(14)

where we used that the integrand is the normal density with standard deviation 1√
1−2λ . The

conclusion above holds for any λ < 1/2. Using (14) in (13) yields

P
(
‖Au‖2 ≥ (1 + ε) ‖u‖2

)
≤

(
e−2(1+ε)λ

1− 2λ

) k
2

. (15)

We next minimize the right hand side (RHS) of (15). To this end, we choose λ such that the term
e−2(1+ε)λ

1−2λ is minimal. It is easily verified (by setting the derivative to zero) that the optimal choice
is λ = ε

2(1+ε) . With this choice,

P
(
‖Au‖2 ≥ (1 + ε) ‖u‖2

)
≤
(
(1 + ε)e−ε

) k
2 < e−(ε

2−ε3) k
4 (16)

where for the last inequality we used

1 + ε < eε−
ε2−ε3

2 .

To prove this inequality it is sufficient to show that

log(1 + ε) ≤ ε− ε2

2
+
ε3

2
.

To show this, recall that the Taylor approximation to the logarithm is:

log(1 + ε) = ε− ε2

2
+
ε3

3
− . . . .

so that for 0 ≤ ε ≤ 1:

log(1 + ε) ≤ ε− ε2

2
+
ε3

3
≤ ε− ε2

2
+
ε3

2
.

Similarly, we obtain

P
(
‖Au‖2 ≤ (1− ε) ‖u‖2

)
< e−(ε

2−ε3) k
4 (17)

Combining (16) and (17) via the union bound concludes the proof.
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5 Verifying the RIP from concentration inequalities

We show how to prove the RIP for random matrices.

Given S with |S| ≤ s, denote

XS = {x ∈ Rn : xi = 0 for i ∈ Sc}.

This is an s-dimensional linear subspace.

Our approach is to construct finite nets of points in each s-dimensional subspace, XS , then apply
the concentration inequality to all these points using the union bound, and then extend the result
from the finite net of points to all possible s-dimensional signals.

Lemma 7. Let D ∈ Rm×n be a random matrix with i.i.d. N (0, 1/m) entries. Then, for all S with
|S| = s < m and all 0 < δ < 1,

(1− δ) ‖x‖2 ≤ ‖Dx‖2 ≤ (1 + δ) ‖x‖2 (18)

is satisfied for all x ∈ XS simultaneously with probability at least

1− 2(12/δ)se−c0(δ/2)m,

where c0(w) = 1
4(w2 − w3).

Proof. Since Dx is a linear map, it suffices to prove (18) for ‖x‖2 = 1. Choose a finite set of points
TS such that TS ⊆ XS , ‖q‖2 = 1 for all q ∈ TS , and for all x ∈ XS with ‖x‖2 = 1, we have

min
q∈TS

‖x− q‖2 ≤ δ/4.

From the theory of covering numbers, it is known that we can choose such a set TS with |TS | ≤
(12/δ)s elements. The finite set TS is called δ/4-net for the infinite set XS .

We use the union bound to apply Lemma 6 to this set of points with ε = δ/2, which yields that

(1− δ/2) ‖q‖22 ≤ ‖Dq‖22 ≤ (1 + δ/2) ‖q‖22

holds for all q ∈ TS simultaneously with probability at least

1− 2(12/δ)se−c0(δ/2)m,

where

c0(w) =
w2 − w3

4
.

We next define A as the smallest number such that

‖Dx‖2 ≤ (1 +A) ‖x‖2 , for all x ∈ XS with ‖x‖2 = 1.

Our goal is to show that A ≤ δ. To this end, recall that for every x ∈ XS with ‖x‖2 = 1, we can
find a q ∈ TS such that ‖x− q‖2 ≤ δ/4. Hence, we have

‖Dx‖2 ≤ ‖Dq‖2 + ‖D(x− q)‖2 ≤ 1 + δ/2 + (1 +A)δ/4.
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Since by definition, A is the smallest number for which ‖Dx‖2 ≤ (1 +A) ‖x‖2, we have

A ≤ δ/2 + (1 +A)δ/4

A(1− δ/4) ≤ δ/2 + δ/4

A ≤ δ/2 + δ/4

1− δ/4
=

2δ + δ

4− δ
≤ 3δ

3
= δ

as desired. We therefore proved that

‖Dx‖2 ≤ (1 + δ) ‖x‖2 .

The inequality ‖Dx‖2 ≥ (1− δ) ‖x‖2 follows since

‖Dx‖2 ≥ ‖Dq‖2 − ‖D(x− q)‖2 ≥ (1− δ/2)− (1 + δ)δ/4

= 1− δ/2− δ/4− δ2/4
≥ 1− δ/2− δ/4− δ/4 = 1− δ,

which completes the proof.

Theorem 8. Fix m, n, and 0 < δ < 1. If the pdf generating D satisfies the concentration
inequality in Lemma 6, then there exist constants c1, c2 > 0 depending only on δ such that with
probability at least ≥ 1− 2e−c2m, δ is the restricted isometry constant of D for every sparsity level
s ≤ c1m/ log(n/s).

Proof. By Lemma 7, we know that for each of the s-dimensional spaces XS , the matrix D will fail
to satisfy

(1− δ) ‖x‖2 ≤ ‖Dx‖2 ≤ (1 + δ) ‖x‖2 , for all x ∈ XS (19)

with probability no larger than
2(12/δ)se−c0(δ/2)m.

There are
(
n
s

)
≤ (en/s)s such subspaces. Hence, by the union bound, δ will fail to be the restricted

isometry constant of D for sparsity level s with probability no larger than

2(en/s)s(12/δ)se−c0(δ/2)m = 2e−c0(δ/2)m+s[log(en/s)+log(12/δ)]. (20)

Thus, for every c1 > 0, whenever

s ≤ c1m

log(n/s)
,

the exponent in (20) is smaller than −c2m, provided that

c2 ≤ c0(δ/2)− c1
(

1 +
1 + log(12/δ)

log(n/s)

)
.

This is true because
e−c0(δ/2)m+s[log(en/s)+log(12/δ)] ≤ e−c2m

follows from
s ≤ c1m

log(n/s)

e
−m

(
c0(δ/2)−c1 log(en/s)+log(12/δ)

log(n/s)

)
≤ e−c2m

c2 ≤ c0(δ/2)− c1
(

1 +
1 + log(12/δ)

log(n/s)

)
.

Hence, we can always choose c1 > 0 sufficiently small to ensure that c2 > 0. This proves that with
probability at least 1− 2e−c2m, δ is the restricted isometry constant of D for sparsity level s.

15



References

[1] E. J. Candès, “The restricted isometry property and its implications for compressed sensing,”
Compte Rendus de l’Academie des Sciences, vol. 346, pp. 589–592, May 2008.

[2] S. Dasgupta and A. Gupta, “An elementary proof of a theorem of johnson and lindenstrauss,”
Random Structures and Algorithms, vol. 22, pp. 60–65, January 2003.

[3] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, “A simple proof of the restricted
isometry property for random matrices,” Constructive Approximation, vol. 28, no. 3, pp. 253–
263, 2008.

[4] N. Alon, “Problems and results in extremal combinatorics-i,” Discrete Math., vol. 273, pp. 31–
53, Dec. 2003.

16


