Lecture 12-13: Super-resolution of Positive Sources

V. Morgenshtern

Mathematical Methods in Machine Learning and Signal Processing SS 2019

Diffraction limits resolution:

Ernst Abbe

Diffraction limits resolution: $\lambda_{c}=\frac{\lambda_{\mathrm{LIGHT}}}{2 n \sin (\theta)}$

[picture from nobelprize.org]

Looking inside the cell: conventional microscopy

microtubule

Nobel Prize in Chemistry 2014

Eric Betzig

Stefan W. Hell

W.E. Moerner

Invention of single-molecule microscopy

Looking inside the cell

conventional microscopy

single-molecule microscopy

Single molecule microscopy (basics)

Controlled photoactivation

Green fluorescent protein (GFP)

Controlled photoactivation

Energy states [Dickson et.al. '97]

Green fluorescent protein (GFP)

- State A is excited to A^{*} and returns to A upon photon emission

Controlled photoactivation

Green fluorescent protein (GFP)
Energy states [Dickson et.al. '97]

- State A is excited to A^{*} and returns to A upon photon emission
- When I is reached from A there is no fluorescence until I spontaneously moves to A (blinking)

Controlled photoactivation

Green fluorescent protein (GFP)
Energy states [Dickson et.al. '97]

- State A is excited to A^{*} and returns to A upon photon emission
- When I is reached from A there is no fluorescence until I spontaneously moves to A (blinking)
- When I moves to N there is no fluorescence until N is activated by 405 nm light and GFP returns to A

Photoactivated localization microscopy (PALM) Setup

[picture from ZEISS]

PALM Process

Step 1

Photoactivate Molecules

Step 2

Step 4

Step 3. Algorithm needed.

Antibodies: attach fluorescent molecules to the structure

All off

Antibodies: attach fluorescent molecules to the structure

All off
All on

Antibodies: attach fluorescent molecules to the structure

All off
All on
Detector
Cannot resolve the structure!

"Blinking" molecules: sparsity

Frame 1

"Blinking" molecules: sparsity

Frame 1

"Blinking" molecules: sparsity

Frame 1
Locate centers of "Gaussian" blobs (parametric estimation)

"Blinking" molecules: sparsity

Frame 1
Locate centers of "Gaussian" blobs (parametric estimation)

"Blinking" molecules: sparsity

Frame 1

Frame 2

Frame 3

Locate centers of "Gaussian" blobs (parametric estimation)

Combine ~ 10000 frames.

"Blinking" molecules: sparsity

Locate centers of "Gaussian" blobs (parametric estimation)

Combine ~ 10000 frames.

The structure is now resolved!

Next Frontier: image dynamical processes

Imaging ~ 10000 frames is slow

Next Frontier: image dynamical processes

Imaging ~ 10000 frames is slow

Can we make data acquisition faster?

Next Frontier: image dynamical processes

Imaging ~ 10000 frames is slow

Can we make data acquisition faster?
Image ~ 2500 frames with 4 times more molecules per frame?

parametric estimation works

4 times more active molecules
\Rightarrow parametric estimation does not work

Next Frontier: image dynamical processes

Imaging ~ 10000 frames is slow

Can we make data acquisition faster?
Image ~ 2500 frames with 4 times more molecules per frame?

parametric estimation works

4 times more active molecules \Rightarrow parametric estimation does not work

Need powerful super-resolution algorithm!

Theory

Theory

Which algorithm?
Performance guarantees?
Fundamental limits?

Mathematical model (discrete 1D setup for simplicity)

Mathematical model (discrete 1D setup for simplicity)

$$
\mathbf{x}=\left[x_{0} \cdots x_{N-1}\right]^{\top} \geq \mathbf{0}
$$

$$
\mathbf{s}=\mathbf{P x}+\mathbf{z}
$$

$\mathbf{P}=\mathbf{P}_{\text {tri }}$ is circulant
Triangular spectrum

Mathematical model (discrete 1D setup for simplicity)

$$
\mathbf{x}=\left[x_{0} \cdots x_{N-1}\right]^{\top} \geq \mathbf{0}
$$

$$
\mathbf{s}=\mathbf{P} \mathbf{x}+\mathbf{z}
$$

$\mathbf{P}=\mathbf{P}_{\text {flat }}$ is circulant
Flat spectrum

Mathematical model (discrete 1D setup for simplicity)

$$
\mathbf{P}=\mathbf{F}^{\mathrm{H}} \hat{\mathbf{P}} \mathbf{F}
$$

DFT:

$$
[\mathbf{F}]_{k, l}=\frac{1}{\sqrt{N}} e^{-\mathrm{i} 2 \pi k l / N}, \quad-N / 2+1 \leq k \leq N / 2,0 \leq l \leq N-1
$$

Spectrum:

$$
\hat{\mathbf{P}}=\operatorname{diag}\left(\left[\hat{p}_{-N / 2+1} \cdots \hat{p}_{N / 2}\right]^{\top}\right)
$$

■ Flat:

$$
\hat{p}_{k}= \begin{cases}1, & k=f_{c}, \ldots, f_{c} \\ 0, & \text { otherwise }\end{cases}
$$

- Triangular:

$$
\hat{p}_{k}= \begin{cases}1-\frac{|k|}{f_{c}+1}, & k=-f_{c}, \ldots, f_{c} \\ 0, & \text { otherwise }\end{cases}
$$

Width of the convolution kernel: $\lambda_{c} \triangleq 1 / f_{c}$

Super-resolution factor and stability

$$
\mathbf{x}=\left[x_{0} \cdots x_{N-1}\right]^{\top}
$$

Triangular spectrum

$$
\mathbf{s}=\mathbf{P x}+\mathbf{z}
$$

$\mathrm{SRF} \triangleq N /\left(2 f_{c}\right)$

Super-resolution factor and stability

$$
\mathbf{x}=\left[x_{0} \cdots x_{N-1}\right]^{\top}
$$

Triangular spectrum

$$
\mathbf{s}=\mathbf{P x}+\mathbf{z}
$$

$$
\mathrm{SRF} \triangleq N /\left(2 f_{c}\right)
$$

Stability: $\quad\|\mathbf{x}-\hat{\mathbf{x}}\| \stackrel{?}{\leq}\|\mathbf{z}\| \cdot$ (amplification factor)

Classical resolution criteria: separation is about λ_{c}

Rayleigh-regularity: $\mathbf{x} \in \mathcal{R}(d, r)$

\mathbf{x} has fewer than r spikes in every $\lambda_{c} d$ interval $\left[\lambda_{c} \triangleq 1 / f_{c}\right]$

Rayleigh-regularity: $\mathbf{x} \in \mathcal{R}(d, r)$

\mathbf{x} has fewer than r spikes in every $\lambda_{c} d$ interval $\left[\lambda_{c} \triangleq 1 / f_{c}\right]$
Separation: $\mathcal{R}(2,1)$

Rayleigh-regularity: $\mathrm{x} \in \mathcal{R}(d, r)$

\mathbf{x} has fewer than r spikes in every $\lambda_{c} d$ interval $\left[\lambda_{c} \triangleq 1 / f_{c}\right]$

Separation: $\mathcal{R}(2,1)$

$\mathcal{R}(4,2)$

Rayleigh-regularity: $\mathbf{x} \in \mathcal{R}(d, r)$

\mathbf{x} has fewer than r spikes in every $\lambda_{c} d$ interval $\left[\lambda_{c} \triangleq 1 / f_{c}\right]$

Separation: $\mathcal{R}(2,1)$

$\mathcal{R}(4,2)$

$\mathcal{R}(6,3)$

Main results

Recall:

$$
\mathbf{s}=\mathbf{P x}+\mathbf{z}
$$

spectrum

Solve:

$$
\operatorname{minimize}\|\mathbf{s}-\mathbf{P} \hat{\mathbf{x}}\|_{1} \quad \text { subject to } \quad \hat{\mathbf{x}} \geq 0
$$

Theorem: (V.Morgenshter, Càndes'14, [1])
Take $\mathbf{P}=\mathbf{P}_{\text {tri }}$ or $\mathbf{P}=\mathbf{P}_{\text {flat }}$. Assume $\mathbf{x} \geq 0, \mathbf{x} \in \mathcal{R}(2 r, r)$. Then,

$$
\|\hat{\mathbf{x}}-\mathbf{x}\|_{1} \leq c \cdot\|\mathbf{z}\|_{1} \cdot\left(\frac{N}{2 f_{c}}\right)^{2 r}
$$

Main results

Recall:
spectrum

Solve:

$$
\operatorname{minimize}\|\mathbf{s}-\mathbf{P} \hat{\mathbf{x}}\|_{1} \quad \text { subject to } \quad \hat{\mathbf{x}} \geq 0
$$

Theorem: (V.Morgenshter, Càndes'14, [1])
Take $\mathbf{P}=\mathbf{P}_{\text {tri }}$ or $\mathbf{P}=\mathbf{P}_{\text {flat }}$. Assume $\mathbf{x} \geq 0, \mathbf{x} \in \mathcal{R}(2 r, r)$. Then,

$$
\|\hat{\mathbf{x}}-\mathbf{x}\|_{1} \leq c \cdot\|\mathbf{z}\|_{1} \cdot\left(\frac{N}{2 f_{c}}\right)^{2 r}
$$

Converse: (V.Morgenshter, Càndes'14, [1])
For $\mathbf{P}=\mathbf{P}_{\text {tri }}$, no algorithm can do better than $c \cdot\|\mathbf{z}\|_{1} \cdot\left(\frac{N}{2 f_{c}}\right)^{2 r-1}$.

Key ideas

\rightarrow Duality theory: to prove stability we need a low-frequency trigonometric polynomial that is "curvy"

- [Dohono, et al.'92, Fuchs'05] construct trigonometric polynomial that is not "curvy"
- [Candès and Fernandez-Granda'12] construct trigonometric polynomial that is "curvy", but construction needs separation
- New construction: multiply "curvy" trigonometric polynomials
- "curvy"
- construction needs no separation

Dual certificate (noisy case)

- \mathcal{T} is the support of \mathbf{x}

■ Suppose, we can construct a low-frequency trig. polynomial:

$$
q(t)=\sum_{k=-f_{c}}^{f_{c}} \hat{q}_{k} e^{-\mathrm{i} 2 \pi k t}, \quad 0 \leq q(t) \leq 1, \quad q\left(t_{i}\right)=0 \text { for all } t_{i} \in \mathcal{T} .
$$

Dual certificate (noisy case)

$\square \mathcal{T}$ is the support of \mathbf{x}
■ Suppose, we can construct a low-frequency trig. polynomial:

■ Then, $\|\hat{\mathbf{x}}-\mathbf{x}\|_{1} \leq 4\|\mathbf{z}\|_{1} / \rho$.

Proof of Lemma

- Set:

$$
\mathbf{h}=\left[h_{0} \cdots h_{N-1}\right]^{\top}=\hat{\mathbf{x}}-\mathbf{x}, \quad \mathcal{T}=\left\{l / N: h_{l}<0\right\}
$$

Proof of Lemma

- Set:

$$
\mathbf{h}=\left[h_{0} \cdots h_{N-1}\right]^{\top}=\hat{\mathbf{x}}-\mathbf{x}, \quad \mathcal{T}=\left\{l / N: h_{l}<0\right\} \subset \operatorname{supp}(\mathbf{x}) .
$$

Proof of Lemma

- Set:

$$
\mathbf{h}=\left[h_{0} \cdots h_{N-1}\right]^{\top}=\hat{\mathbf{x}}-\mathbf{x}, \quad \mathcal{T}=\left\{l / N: h_{l}<0\right\} \subset \operatorname{supp}(\mathbf{x})
$$

■ Dual vector (contains samples) $q_{l}=q(l / N)$ satisfies:

$$
\mathbf{P}_{\text {flat }} \mathbf{q}=\mathbf{q}, \quad\|\mathbf{q}\|_{\infty}=1, \quad \text { and } \quad \begin{cases}q_{l}=0, & l / N \in \mathcal{T} \\ q_{l}>\rho, & \text { otherwise }\end{cases}
$$

Proof of Lemma

- Set:

$$
\mathbf{h}=\left[h_{0} \cdots h_{N-1}\right]^{\top}=\hat{\mathbf{x}}-\mathbf{x}, \quad \mathcal{T}=\left\{l / N: h_{l}<0\right\} \subset \operatorname{supp}(\mathbf{x}) .
$$

■ Dual vector (contains samples) $q_{l}=q(l / N)$ satisfies:

$$
\mathbf{P}_{\text {flat }} \mathbf{q}=\mathbf{q}, \quad\|\mathbf{q}\|_{\infty}=1, \quad \text { and } \quad \begin{cases}q_{l}=0, & l / N \in \mathcal{T} \\ q_{l}>\rho, & \text { otherwise }\end{cases}
$$

- On the one hand:

$$
\begin{aligned}
|\langle\mathbf{q}-\rho / 2, \mathbf{h}\rangle| & =|\langle\mathbf{P}(\mathbf{q}-\rho / 2), \mathbf{h}\rangle|=|\langle\mathbf{q}-\rho / 2, \mathbf{P h}\rangle| \\
& \leq\|\mathbf{q}-\rho / 2\|_{\infty}\|\mathbf{P h}\|_{1} \leq\|\mathbf{P} \mathbf{x}-\mathbf{s}+\mathbf{s}-\mathbf{P} \hat{\mathbf{x}}\|_{1} \\
& \leq\|\mathbf{P} \mathbf{x}-\mathbf{s}\|_{1}+\|\mathbf{s}-\mathbf{P} \hat{\mathbf{x}}\|_{1} \\
& \leq 2\|\mathbf{P} \mathbf{x}-\mathbf{s}\|_{1} \leq 2\|\mathbf{z}\|_{1} .
\end{aligned}
$$

Proof of Lemma

- Set:

$$
\mathbf{h}=\left[h_{0} \cdots h_{N-1}\right]^{\top}=\hat{\mathbf{x}}-\mathbf{x}, \quad \mathcal{T}=\left\{l / N: h_{l}<0\right\} \subset \operatorname{supp}(\mathbf{x}) .
$$

■ Dual vector (contains samples) $q_{l}=q(l / N)$ satisfies:

$$
\mathbf{P}_{\text {flat }} \mathbf{q}=\mathbf{q}, \quad\|\mathbf{q}\|_{\infty}=1, \quad \text { and } \quad \begin{cases}q_{l}=0, & l / N \in \mathcal{T} \\ q_{l}>\rho, & \text { otherwise }\end{cases}
$$

- On the one hand:

$$
\begin{aligned}
|\langle\mathbf{q}-\rho / 2, \mathbf{h}\rangle| & =|\langle\mathbf{P}(\mathbf{q}-\rho / 2), \mathbf{h}\rangle|=|\langle\mathbf{q}-\rho / 2, \mathbf{P h}\rangle| \\
& \leq\|\mathbf{q}-\rho / 2\|_{\infty}\|\mathbf{P h}\|_{1} \leq\|\mathbf{P} \mathbf{x}-\mathbf{s}+\mathbf{s}-\mathbf{P} \hat{\mathbf{x}}\|_{1} \\
& \leq\|\mathbf{P} \mathbf{x}-\mathbf{s}\|_{1}+\|\mathbf{s}-\mathbf{P} \hat{\mathbf{x}}\|_{1} \\
& \leq 2\|\mathbf{P} \mathbf{x}-\mathbf{s}\|_{1} \leq 2\|\mathbf{z}\|_{1} .
\end{aligned}
$$

- On the other hand:
$|\langle\mathbf{q}-\rho / 2, \mathbf{h}\rangle|=\left|\sum_{l=0}^{N-1}\left(q_{l}-\rho / 2\right) h_{l}\right|=\sum_{l=0}^{N-1}\left(q_{l}-\rho / 2\right) h_{l} \geq \rho\|\mathbf{h}\|_{1} / 2$.

Proof of Lemma

- Set:

$$
\mathbf{h}=\left[h_{0} \cdots h_{N-1}\right]^{\top}=\hat{\mathbf{x}}-\mathbf{x}, \quad \mathcal{T}=\left\{l / N: h_{l}<0\right\} \subset \operatorname{supp}(\mathbf{x}) .
$$

■ Dual vector (contains samples) $q_{l}=q(l / N)$ satisfies:

$$
\mathbf{P}_{\text {flat }} \mathbf{q}=\mathbf{q}, \quad\|\mathbf{q}\|_{\infty}=1, \quad \text { and } \quad \begin{cases}q_{l}=0, & l / N \in \mathcal{T} \\ q_{l}>\rho, & \text { otherwise }\end{cases}
$$

- On the one hand:

$$
\begin{aligned}
|\langle\mathbf{q}-\rho / 2, \mathbf{h}\rangle| & =|\langle\mathbf{P}(\mathbf{q}-\rho / 2), \mathbf{h}\rangle|=|\langle\mathbf{q}-\rho / 2, \mathbf{P h}\rangle| \\
& \leq\|\mathbf{q}-\rho / 2\|_{\infty}\|\mathbf{P h}\|_{1} \leq\|\mathbf{P} \mathbf{x}-\mathbf{s}+\mathbf{s}-\mathbf{P} \hat{\mathbf{x}}\|_{1} \\
& \leq\|\mathbf{P} \mathbf{x}-\mathbf{s}\|_{1}+\|\mathbf{s}-\mathbf{P} \hat{\mathbf{x}}\|_{1} \\
& \leq 2\|\mathbf{P} \mathbf{x}-\mathbf{s}\|_{1} \leq 2\|\mathbf{z}\|_{1} .
\end{aligned}
$$

- On the other hand:

$$
|\langle\mathbf{q}-\rho / 2, \mathbf{h}\rangle|=\left|\sum_{l=0}^{N-1}\left(q_{l}-\rho / 2\right) h_{l}\right|=\sum_{l=0}^{N-1}\left(q_{l}-\rho / 2\right) h_{l} \geq \rho\|\mathbf{h}\|_{1} / 2
$$

■ Combining: $\|\mathbf{h}\|_{1} \leq 4\|\mathbf{z}\|_{1} / \rho$.

Key ideas

- Duality theory: to prove stability we need a low-frequency trigonometric polynomial that is "curvy"
\rightarrow [Dohono, et al.'92, Fuchs'05] construct trigonometric polynomial that is not "curvy"
- [Candès and Fernandez-Granda'12] construct trigonometric polynomial that is "curvy", but construction needs separation
- New construction: multiply "curvy" trigonometric polynomials
- "curvy"
- construction needs no separation

Donoho, et al.'92, Fuchs'05, [2, 3]: "Classical" q(t)

$$
q(t)=\prod_{t_{0} \in \mathcal{T}} \frac{1}{2}\left[\cos \left(2 \pi\left(t+1 / 2-t_{0}\right)\right)+1\right] .
$$

Euler's formula:

$$
\cos (2 \pi t)=\frac{e^{\mathrm{i} 2 \pi t}+e^{-\mathrm{i} 2 \pi t}}{2}
$$

Sparsity implies $q(t)$ is low-frequency:

$$
q(t)=\sum_{k=-f_{c}}^{f_{c}} \hat{q}_{k} e^{-\mathrm{i} 2 \pi k t} \text { if }|\mathcal{T}| \leq f_{c}
$$

$$
s \leq|\mathcal{T}| \leq f_{c}=\frac{1}{2} \times \text { number of measurements }
$$

No square-root bottleneck!

Donoho et al.'92 [2], Fuchs'05 [3]: "Classical" q(t)

$$
q(t)=\prod_{t_{0} \in \mathcal{T}} \frac{1}{2}\left[\cos \left(2 \pi\left(t+1 / 2-t_{0}\right)\right)+1\right] .
$$

No separation required

$$
q\left(t-t_{0}\right) \approx\left(t-t_{0}\right)^{2} \Rightarrow\|\mathbf{x}-\hat{\mathbf{x}}\|_{1} \leq\|\mathbf{z}\|_{1} \cdot N^{2}
$$

Dual certificate (noiseless case, $\mathbf{z}=\mathbf{0}$)

$\square \mathcal{T}$ is the support of \mathbf{x}
■ Suppose, we can construct a low-frequency trig. polynomial:

- Then, $\hat{\mathrm{x}}=\mathrm{x}$.

Connection to LASSO (x can be negative here)

minimize $\|\hat{\mathbf{x}}\|_{1} \quad$ subject to $\quad \mathbf{s}=\mathbf{P} \hat{\mathbf{x}}$

■ $\hat{\mathbf{x}}=\mathbf{x}$ iff there exists $\mathbf{q} \perp \operatorname{null}(\mathbf{P})$ and $\mathbf{q} \in \partial\|\mathbf{x}\|_{1}$

■ \mathbf{P} is orthogonal projection onto the set of low-freq. trig. polynomials:

$$
\begin{aligned}
& \mathbf{q} \perp \operatorname{null}(\mathbf{P}) \Leftrightarrow \\
& \quad q(t)=\sum_{k=-f_{c}}^{f_{c}} \hat{q}_{k} e^{-\mathrm{i} 2 \pi k t}
\end{aligned}
$$

■ $\mathbf{q} \in \partial\|\mathbf{x}\|_{1} \Leftrightarrow$

$$
\begin{cases}q\left(t_{i}\right)=\operatorname{sign}\left(x_{i}\right) & x_{i} \neq 0 \\ \left|q\left(t_{i}\right)\right| \leq 1 & x_{i}=0\end{cases}
$$

Connection to LASSO (x can be negative here)

$\operatorname{minimize} \quad\|\hat{\mathbf{x}}\|_{1} \quad$ subject to $\quad \mathbf{s}=\mathbf{P} \hat{\mathbf{x}}$

■ $\hat{\mathbf{x}}=\mathbf{x}$ iff there exists $\mathbf{q} \perp \operatorname{null}(\mathbf{P})$ and $\mathbf{q} \in \partial\|\mathbf{x}\|_{1}$

■ \mathbf{P} is orthogonal projection onto the set of low-freq. trig. polynomials:

$$
\begin{aligned}
& \mathbf{q} \perp \operatorname{null}(\mathbf{P}) \Leftrightarrow \\
& \quad q(t)=\sum_{k=-f_{c}}^{f_{c}} \hat{q}_{k} e^{-\mathrm{i} 2 \pi k t}
\end{aligned}
$$

■ $\mathbf{q} \in \partial\|\mathbf{x}\|_{1} \Leftrightarrow$

$$
\begin{cases}q\left(t_{i}\right)=\operatorname{sign}\left(x_{i}\right) & x_{i} \neq 0 \\ \left|q\left(t_{i}\right)\right| \leq 1 & x_{i}=0\end{cases}
$$

Connection to LASSO (x can be negative here)

$\operatorname{minimize} \quad\|\hat{\mathbf{x}}\|_{1} \quad$ subject to $\quad \mathbf{s}=\mathbf{P} \hat{\mathbf{x}}$

■ $\hat{\mathbf{x}}=\mathbf{x}$ iff there exists $\mathbf{q} \perp \operatorname{null}(\mathbf{P})$ and $\mathbf{q} \in \partial\|\mathbf{x}\|_{1}$

■ \mathbf{P} is orthogonal projection onto the set of low-freq. trig. polynomials:

$$
\begin{aligned}
& \mathbf{q} \perp \operatorname{null}(\mathbf{P}) \Leftrightarrow \\
& \quad q(t)=\sum_{k=-f_{c}}^{f_{c}} \hat{q}_{k} e^{-\mathrm{i} 2 \pi k t}
\end{aligned}
$$

■ $\mathbf{q} \in \partial\|\mathbf{x}\|_{1} \Leftrightarrow$

$$
\begin{cases}q\left(t_{i}\right)=\operatorname{sign}\left(x_{i}\right) & x_{i} \neq 0 \\ \left|q\left(t_{i}\right)\right| \leq 1 & x_{i}=0\end{cases}
$$

Connection to LASSO (x can be negative here)

$\operatorname{minimize} \quad\|\hat{\mathbf{x}}\|_{1} \quad$ subject to $\quad \mathbf{s}=\mathbf{P} \hat{\mathbf{x}}$

■ $\hat{\mathbf{x}}=\mathbf{x}$ iff there exists $\mathbf{q} \perp \operatorname{null}(\mathbf{P})$ and $\mathbf{q} \in \partial\|\mathbf{x}\|_{1}$

■ \mathbf{P} is orthogonal projection onto the set of low-freq. trig. polynomials:

$$
\begin{aligned}
& \mathbf{q} \perp \operatorname{null}(\mathbf{P}) \Leftrightarrow \\
& \quad q(t)=\sum_{k=-f_{c}}^{f_{c}} \hat{q}_{k} e^{-\mathrm{i} 2 \pi k t}
\end{aligned}
$$

■ $\mathbf{q} \in \partial\|\mathbf{x}\|_{1} \Leftrightarrow$

$$
\begin{cases}q\left(t_{i}\right)=\operatorname{sign}\left(x_{i}\right) & x_{i} \neq 0 \\ \left|q\left(t_{i}\right)\right| \leq 1 & x_{i}=0\end{cases}
$$

Connection to LASSO (x can be negative here)

$\operatorname{minimize} \quad\|\hat{\mathbf{x}}\|_{1} \quad$ subject to $\quad \mathbf{s}=\mathbf{P} \hat{\mathbf{x}}$

■ $\hat{\mathbf{x}}=\mathbf{x}$ iff there exists $\mathbf{q} \perp \operatorname{null}(\mathbf{P})$ and $\mathbf{q} \in \partial\|\mathbf{x}\|_{1}$

■ \mathbf{P} is orthogonal projection onto the set of low-freq. trig. polynomials:

$$
\begin{aligned}
& \mathbf{q} \perp \operatorname{null}(\mathbf{P}) \Leftrightarrow \\
& \quad q(t)=\sum_{k=-f_{c}}^{f_{c}} \hat{q}_{k} e^{-\mathrm{i} 2 \pi k t}
\end{aligned}
$$

■ $\mathbf{q} \in \partial\|\mathbf{x}\|_{1} \Leftrightarrow$

$$
\begin{cases}q\left(t_{i}\right)=\operatorname{sign}\left(x_{i}\right) & x_{i} \neq 0 \\ \left|q\left(t_{i}\right)\right| \leq 1 & x_{i}=0\end{cases}
$$

Key ideas

- Duality theory: to prove stability we need a low-frequency trigonometric polynomial that is "curvy"
- [Dohono, et al.'92, Fuchs'05] construct trigonometric polynomial that is not "curvy"
\rightarrow [Candès and Fernandez-Granda'12] construct trigonometric polynomial that is "curvy", but construction needs separation
- New construction: multiply "curvy" trigonometric polynomials
- "curvy"
- construction needs no separation

Candès, Fernandez-Granda'12, [4]: "Curvy" $q(t)$

$$
q(t)=\sum_{t_{j} \in \mathcal{T}} a_{j} K\left(t-t_{j}\right)+\text { corrections }
$$

$K(t) \ldots$ low-frequency and "curvy"

Separation between zeros required: $\mathcal{T} \in \mathcal{R}(2,1)$

High curvature!

$$
q\left(t-t_{i}\right) \approx f_{c}^{2}\left(t-t_{i}\right)^{2} \Rightarrow\|\mathbf{x}-\hat{\mathbf{x}}\|_{1} \leq c \cdot\|\mathbf{z}\|_{1} \cdot\left(\frac{N}{2 f_{c}}\right)^{2}
$$

Comparison of Trigonometric Polynomials

Key ideas

- Duality theory: to prove stability we need a low-frequency trigonometric polynomial that is "curvy"
- [Dohono, et al.'92], [Fuchs'05]: construct trigonometric polynomial that is not "curvy"
- [Candès and Fernandez-Granda'12]:, construct trigonometric polynomial that is "curvy", but construction needs separation
\rightarrow New construction: multiply "curvy" trigonometric polynomials
- "curvy"
- construction needs no separation

New construction: curvature without separation

Partition support: $\mathcal{T}=\mathcal{T}_{1} \cup \mathcal{T}_{2}, \quad r=2$
Regularity: $\mathcal{T} \in \mathcal{R}(2 \cdot 2,2) \Rightarrow \mathcal{T}_{i} \in \mathcal{R}(4,1)$

New construction: curvature without separation

Partition support: $\mathcal{T}=\mathcal{T}_{1} \cup \mathcal{T}_{2}, \quad r=2$
Regularity: $\mathcal{T} \in \mathcal{R}(2 \cdot 2,2) \Rightarrow \mathcal{T}_{i} \in \mathcal{R}(4,1)$

High curvature!

$$
q\left(t-t_{i}\right) \approx \frac{f_{c}^{2 r}}{r^{2 r}}\left(t-t_{i}\right)^{2 r} \Rightarrow\|\mathbf{x}-\hat{\mathbf{x}}\|_{1} \leq c \cdot\|\mathbf{z}\|_{1} \cdot\left(\frac{N}{2 f_{c}}\right)^{2 r}
$$

Summation vs. multiplication

Remember: $q(t)$ must be frequency-limited to f_{c} !

Summation vs. multiplication

Remember: $q(t)$ must be frequency-limited to f_{c} !
[Donoho et.al.'92, Fuchs'05]:

$$
q(t)=\prod_{t_{j} \in \mathcal{T}} \underbrace{\frac{1}{2}\left[\cos \left(2 \pi\left(t+1 / 2-t_{j}\right)\right)+1\right]}_{\text {frequency one }}
$$

Summation vs. multiplication

Remember: $q(t)$ must be frequency-limited to f_{c} !
[Donoho et.al.'92, Fuchs'05]:

$$
q(t)=\prod_{t_{j} \in \mathcal{T}} \underbrace{\frac{1}{2}\left[\cos \left(2 \pi\left(t+1 / 2-t_{j}\right)\right)+1\right]}_{\text {frequency one }}
$$

q(t)=\sum_{t_{j} \in \mathcal{T}} \underbrace{a_{j} K\left(t-t_{j}\right)}_{frequency f_{c}}
\]

Summation vs. multiplication

Remember: $q(t)$ must be frequency-limited to f_{c} !
[Donoho et.al.'92, Fuchs'05]:

$$
q(t)=\prod_{t_{j} \in \mathcal{T}} \underbrace{\frac{1}{2}\left[\cos \left(2 \pi\left(t+1 / 2-t_{j}\right)\right)+1\right]}_{\text {frequency one }}
$$

q(t)=\sum_{t_{j} \in \mathcal{T}} \underbrace{a_{j} K\left(t-t_{j}\right)}_{frequency f_{c}}
\]

This work:

$$
q(t)=\prod_{k=1}^{r} \sum_{t_{j k} \in \mathcal{T}_{k}} \underbrace{a_{j k} K\left(t-t_{j k}\right)}_{\text {frequency } f_{c} / r}
$$

Complex vs. positive signals

Why do we need $\mathbf{x} \geq \mathbf{0}$?

$$
\mathrm{x} \geq \mathbf{0}
$$

$$
\mathbf{x} \in \mathbb{C}^{N}
$$

Interpolate zero on supp. of \mathbf{x}
Interpolate $\operatorname{sign}(\mathbf{x})$ on supp. of \mathbf{x}

Does not exist! (Bernstein Th.)

Continuous setup

f_{c} fixed, $N \rightarrow \infty \Rightarrow \mathrm{SRF}_{\text {OLD }} \rightarrow \infty$

Is the problem hopeless?

f_{c} fixed, $N \rightarrow \infty \Rightarrow$ SRF $_{\text {OLD }} \rightarrow \infty$

Is the problem hopeless?
No: we need to be less ambitions!

f_{c} fixed, $N \rightarrow \infty \Rightarrow$ SRF $_{\text {OLD }} \rightarrow \infty$

Is the problem hopeless?
No: we need to be less ambitions!

f_{c} fixed, $N \rightarrow \infty \Rightarrow \mathrm{SRF}_{\text {OLD }} \rightarrow \infty$

Is the problem hopeless?
No: we need to be less ambitions!

Error $=\left\|f_{\text {hi }} \star(x-\hat{x})\right\|_{1}$

$\mathrm{SRF}_{\text {NEW }}=\lambda_{c} / \lambda_{\mathrm{hi}}$

Need new tools

Theorem: (V. Morgenshtern, 2019, [5])
Assume $x(t) \geq 0, x(t) \in \mathcal{R}(2 r, r)$. Then,

$$
\left\|f_{\mathrm{hi}} \star(x-\hat{x})\right\|_{1} \leq c \cdot\left(\frac{\lambda_{c}}{\lambda_{\mathrm{hi}}}\right)^{2 r} \cdot\|z(t)\|_{1}
$$

Need new tools

Theorem: (V. Morgenshtern, 2019, [5])
Assume $x(t) \geq 0, x(t) \in \mathcal{R}(2 r, r)$. Then,

$$
\left\|f_{\mathrm{hi}} \star(x-\hat{x})\right\|_{1} \leq c \cdot\left(\frac{\lambda_{c}}{\lambda_{\mathrm{hi}}}\right)^{2 r} \cdot\|z(t)\|_{1}
$$

Can do: all zeros

Need: arbitrary pattern $\{0,+\rho\}$

2D Super-resolution

Theorem: (V. Morgenshtern and E. Candès, 2016, [1])
Take $\mathbf{P}=\mathbf{P}_{\text {tri }, 2 \mathrm{D}}$ or $\mathbf{P}=\mathbf{P}_{\text {flat }, 2 \mathrm{D}}$. Assume $\mathbf{x} \geq 0, \mathbf{x} \in \mathcal{R}(2.38 r, r)$.
Then,

$$
\|\hat{\mathbf{x}}-\mathbf{x}\|_{1} \leq c \cdot\left(\frac{N}{2 f_{c}}\right)^{2 r} \delta
$$

New: number of spikes is linear in the number of observations

Improving microscopes

Collaboration with Moerner Lab, C.A. Sing-Long, E. Candès

Reconstruction of 3D signals from 2D data

2D double-helix data

Reconstruction of 3D signals from 2D data

2D double-helix data

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2}\|\mathbf{s}-\mathbf{P} \hat{\mathbf{x}}\|_{2}^{2}+\lambda \sigma\|\operatorname{diag}(\mathbf{w}) \hat{\mathbf{x}}\|_{1} \\
\text { subject to } & \hat{\mathbf{x}} \geq 0
\end{array}
$$

Preliminary result: 4 times faster than state-of-the-art

10000 CVX problems solved TFOCS first order solver millions of variables

Flexible framework: smooth background separation

minimize
$\frac{1}{2}\|\mathbf{s}-\mathbf{P}(\hat{\mathbf{x}}+\mathbf{b})\|_{2}^{2}+\lambda \sigma\|\hat{\mathbf{x}}\|_{1}$
subject to
$\hat{\mathbf{x}} \geq 0$
b low freq. trig. polynomial (background)

Conclusion

Convex optimization is a near-optimal method for super-resolution of positive sources

- Flexibility and good practical performance
- Non-asymptotic precise stability bounds
- Rayleigh-regularity is fundamental: separation between spikes is only one part of the picture

Backup slides

Connection to Bernstein theorem

Consider: $q(t)=\sum_{k=-f_{c}}^{f_{c}} \hat{q}_{k} e^{-\mathrm{i} 2 \pi k t}$ with $\|q\|_{\infty} \leq 1$
Then: $\left\|q^{\prime}\right\|_{\infty} \leq 2 f_{c}$

Connection to Bernstein theorem

Consider: $q(t)=\sum_{k=-f_{c}}^{f_{c}} \hat{q}_{k} e^{-\mathrm{i} 2 \pi k t}$ with $\|q\|_{\infty} \leq 1$
Then: $\left\|q^{\prime}\right\|_{\infty} \leq 2 f_{c}$
"Curvy" $q(t)$ has best possible curvature!

Connection to Bernstein theorem

Consider: $q(t)=\sum_{k=-f_{c}}^{f_{c}} \hat{q}_{k} e^{-\mathrm{i} 2 \pi k t}$ with $\|q\|_{\infty} \leq 1$
Then: $\left\|q^{\prime}\right\|_{\infty} \leq 2 f_{c}$
"Curvy" $q(t)$ has best possible curvature!
Since

$$
\begin{aligned}
& q\left(t_{i}\right)=0 \\
& q^{\prime}\left(t_{i}\right)=0 \\
& \|q\|_{\infty} \leq 1
\end{aligned}
$$

We conclude:

$$
\begin{aligned}
\left\|q^{\prime}\right\|_{\infty} \leq 2 f_{c} & \Rightarrow\left\|q^{\prime \prime}\right\|_{\infty} \leq\left(2 f_{c}\right)^{2} \\
& \Rightarrow q\left(t-t_{i}\right) \leq\left(2 f_{c}\right)^{2}\left(t-t_{i}\right)^{2} \\
& \Rightarrow q\left(t_{i}+1 / N\right) \leq \frac{\left(2 f_{c}\right)^{2}}{N^{2}}=\frac{1}{\mathrm{SRF}^{2}}
\end{aligned}
$$

New tools

1 Control behavior on separated set

2 Multiply

$$
\begin{aligned}
& q(t)=q_{1}(t) \times q_{2}(t) \\
& 0=q^{\prime}\left(t_{3}\right)=q_{1}^{\prime}\left(t_{3}\right) q_{2}\left(t_{3}\right)+q_{1}\left(t_{3}\right) q_{2}^{\prime}\left(t_{3}\right)
\end{aligned}
$$

New tools

1 Control behavior on separated set
2 Multiply

$$
\begin{aligned}
& q(t)=q_{1}(t) \times q_{2}(t) \\
& 0=q^{\prime}\left(t_{3}\right)=q_{1}^{\prime}\left(t_{3}\right) q_{2}\left(t_{3}\right)+q_{1}\left(t_{3}\right) q_{2}^{\prime}\left(t_{3}\right)
\end{aligned}
$$

3 Sum

$$
q(t)=\sum_{r} \prod_{k=1}^{r} \sum_{t_{j k} \in \mathcal{T}_{k}} \underbrace{a_{j k} K\left(t-t_{j k}\right)}_{\text {frequency } f_{c} / r}
$$

(iv. V. I. Morgenshtern and E. J. Candès, "Super-resolution of positive sources: the discrete setup," SIAM J. Imaging Sci., vol. 9, pp. 412-444, Mar. 2016.
D. L. Donoho, I. M. Johnstone, J. C. Hoch, and A. S. Stern, "Maximum entropy and the nearly black object," J. Roy. Statist. Soc. Ser. B, vol. 54, pp. 41-81, June 1992.

直 J.-J. Fuchs, "Sparsity and uniqueness for some specific under-determined linear systems," in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), vol. 5, pp. v/729-v/732, 2005.
E. J. Candès and C. Fernandez-Granda, "Towards a mathematical theory of super-resolution," Commun. Pure Appl. Math., vol. 67, pp. 906-956, June 2014.

風 V. I. Morgenshtern, "Super-resolution of positive sources: the continuous setup," J. of Fourier Analysis and Appl., 2019. To be submitted.

