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Let D 2 CK⇥N be a dictionary of N > K vectors having unit `2-norm, i.e., kd`k2 = 1 for all
` 2 J1, NK. This dictionary is supposed to be complete, which means that it includes K linearly
independent vectors that define a basis of the signal space CK .

1 Matching Pursuit (MP)

The Matching Pursuit (MP) algorithm was introduced by S. Mallat and Z. Zhang in 1993. It
computes an s-term approximation of a signal x 2 CK in D, by iteratively selecting a single
dictionary vector at a time.

Principle of the MP algorithm. The algorithm starts by projecting x orthogonally onto a
vector d`0 , `0 2 J1, NK,

x = hx,d`0id`0 + r(1),

r(1) being the residual. Since r(1) is orthogonal to d`0 , it follows from Pythagoras theorem that

kxk22 = |hx,d`0i|
2 + kr(1)k22.

In order to minimize kr(1)k2, we must choose d`0 , `0 2 J1, NK, such that |hx,d`0i| is maximum1,
that is,

`0 2 arg max
`2J1,NK

|hx,d`i| .

The MP algorithm iterates this procedure by subdecomposing the residual. Assume that the mth
residual r(m) has already being computed for m > 0 (initially, we take r(0) = x). Then, the next
iteration chooses d`m , `m 2 J1, NK such that2

`m 2 arg max
`2J1,NK

���
D
r(m),d`

E��� ,

and projects r(m) onto d`m , thus defining the (m+ 1)th residual r(m+1),

r(m) =
D
r(m),d`m

E
d`m + r(m+1). (1)

Again, the orthogonality of r(m+1) and d`m implies that
���r(m)

���
2

2
=
���
D
r(m),d`m

E���
2
+
���r(m+1)

���
2

2
. (2)

1In practice, it is sometimes computationally more efficient to find a vector d`0 that is almost optimal, that is,
|hx,d`0i| > ↵max`2J1,NK |hx,d`i|, where ↵ 2 (0, 1] is a relaxation factor. In this case, the algorithm is referred to
as weak MP.

2This step becomes
���
D
r(m),d`m

E��� > ↵max`2J1,NK
���
D
r(m),d`

E��� for weak MP with relaxation parameter ↵ 2 (0, 1].
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Summing (1) and (2) for m between 0 and M � 1 gives

x =
M�1X

m=0

D
r(m),d`m

E
d`m + r(M) (3)

and

kxk22 =
M�1X

m=0

���
D
r(m),d`m

E���
2
+
���r(M)

���
2

2
. (4)

Convergence of the MP algorithm. We can observe from (3) and (4) that the convergence
of the MP algorithm depends on the rate of decay of the residual

��r(m)
��2
2
. The following theorem

shows that it has an exponential decay.

Theorem 1 (Convergence of the MP algorithm). The residual r(m) computed by the MP
algorithm satisfies3 ���r(m)

���
2

2
6
�
1� µ2

min(D)
�m kxk22 ,

where
µmin(D) = inf

r2CK

r 6=0

µ(r,D) > 0

and
µ(r,D) = max

`2J1,NK

����

⌧
r

krk2
,d`

����� 6 1

is the coherence of the vector r relative to the dictionary. As a consequence,

x =
1X

m=0

D
r(m),d`m

E
d`m and kxk22 =

1X

m=0

���
D
r(m),d`m

E���
2
.

Proof. For k 2 J0,m� 1K, Pythagoras theorem stated in (2) implies that
��r(k+1)

��2
2��r(k)

��2
2

= 1�

�����

*
r(k)��r(k)
��
2

,d`k

+�����

2

.

By definition of d`k
, it holds that

��r(k+1)
��2
2��r(k)

��2
2

= 1� max
`2J1,NK

�����

*
r(k)��r(k)
��
2

,d`

+�����

2

= 1� µ2
⇣
r(k),D

⌘
.

We have then
��r(k+1)

��2
2��r(k)

��2
2

6 sup
r2CK

r 6=0

�
1� µ2(r,D)

�
= 1� inf

r2CK

r 6=0

µ2(r,D) = 1� µ2
min(D).

Multiplying this last inequality for k between 0 and m� 1 and using the fact that r(0) = x yields
���r(m)

���
2

2
6
�
1� ↵2µ2

min(D)
�m kxk22 .

3The residual satisfies
���r(m)

���
2

2
6

�
1� ↵2µ2

min(D)
�m kxk22 for weak MP with relaxation parameter ↵ 2 (0, 1].
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We now have to verify that µmin(D) > 0. By way of contradiction, assume that µmin(D) = 0.
Then, one can find a sequence {xn}n2N of CK with kxnk2 = 1 such that

lim
n!1

max
`2J1,NK

|hxn,d`i| = 0.

Since the unit sphere of CN is compact, there exists a subsequence {znk}k2N of {zn}n2N that
converges to a unit vector z 2 CN , kzk2 = 1. It follows that

max
`2J1,NK

|hz,d`i| = lim
k!1

max
`2J1,NK

|hznk ,d`i| = 0.

Hence, hz,d`i = 0 for all ` 2 J1, NK. Since {d`}`2J1,NK contains a basis for CK , necessarily, z = 0,
which contradicts the fact that kzk2 = 1. Therefore, µmin(D) > 0. As a result, 1�↵2µmin(D) < 1,
implying that limm!1

��r(m)
��
2
= 0. We can conclude by noting that (3) and (4) becomes

x =
1X

m=0

D
r(m),d`m

E
dm` and kxk22 =

1X

m=0

���
D
r(m),d`m

E���
2

as M ! 1.

2 Orthogonal Matching Pursuit (OMP)

At each iteration m, the vector d`m selected by the Matching Pursuit algorithm is a priori not
orthogonal to the previously selected vectors d`k

, k 2 J0,m�1K. The Orthogonal Matching Pursuit
(OMP) algorithm improves the MP algorithm by orthogonalizing the directions of projections.

The Gram-Schmidt algorithm orthogonalizes d`m with respect to {d`k
}k2J0,m�1K,

u0 = d`0

um = d`m �
m�1X

k=0

hd`m ,uki
kukk22

uk. (5)

The residual r(m) is projected onto um instead of d`m ,

r(m) =

⌦
r(m),um

↵

kumk22
um + r(m+1) =

uH
mr(m)

kumk22
um + r(m+1) =

umuH
m

kumk22
r(m) + r(m+1),

which yields the relation  
IK � umuH

m

kumk22

!
r(m) = r(m+1).

Since r(0) = x and the vectors um are orthogonal, it results that
 
IK � u0uH

0

ku0k22

!
. . .

 
IK �

uM�1uH

M�1

kuM�1k22

!
x

| {z }
=(IK�PVM

)x

= r(M),

where

PVM =
M�1X

m=0

um (um)H

kumk22
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is the orthogonal projector onto the space VM = span{um}m2J0,M�1K. It follows that

x = PVMx+ r(M).

The Gram-Schmidt algorithm ensures that {dm}m2J0,M�1K is also a basis for VM . The residual
r(M) is the component of x that is orthogonal to VM . For m = M , (5) implies that

D
r(M),uM

E
=
D
r(M),dM

E
.

Since VM has dimension M , there exists P 6 N such that x 2 VP . We have then r(P ) = 0 and

x =
P�1X

m=0

⌦
r(m),dm

↵

kumk22
um.

The algorithm stops after P 6 N iterations. The energy conservation resulting from the
decomposition is

kxk22 =
M�1X

m=0

��⌦r(m),dm

↵��2

kumk22
.

To expand x over the original dictionary vectors dm, we can perform a change of basis. The
OMP algorithm is summarized as Algorithm 1.

Algorithm 1: Orthogonal Matching Pursuit (OMP)
Input : D, a dictionary in CK⇥N ,

x, a signal in CK ,
s, the sparsity level of the ideal signal.

Output : b↵, a sparse representation of the signal in CN ,
I, the support of the estimated signal, i.e., the set containing the position of

the nonzero elements of ↵̂.

1: Initialize the sparse representation ↵(0) = 0, the index set I(0) = ;, the matrix of chosen
atoms D(0) = [ ], and the iteration counter t = 1.

2: while t < s do

3: Calculate the residual:
r(t) = x�D(t�1)↵(t�1).

4: Find the index of the column of D that is most correlated with r(t):
i(t) = argmax

j=1,...,N

��⌦r(t),Dj

↵��.

If the maximum occurs for multiple indices, choose one arbitrarily.
5: Augment the index set I(t) = I(t�1) [ {i(t)}

and the matrix of chosen atoms D(t) = concat(D(t�1),D
i(t)).

6: Update the signal estimate by solving the least square problem:
↵(t) = argmin

↵2CN

kx�D(t)↵k2, i.e., ↵(t) = D(t)†x.

7: t = t+ 1.
8: end while

9: b↵ = ↵(t) and I = I(t).
10: return b↵, I
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3 Exact Recovery Conditions

Theorem 2. For ⇤ ✓ J1, NK, let {d̃`}`2⇤ be the dual basis of {d`}`2⇤ in V = span{d`}⇤ and
define

ERC(⇤) = max
m2⇤c

X

`2⇤

���
D
d̃`,dm

E��� ,

where ⇤c = J1, NK \ ⇤ denotes the complement of ⇤. Let x = D↵ 2 CK , where ↵ 2 CN , and
denote S = supp↵ = {` 2 J1, NK : |↵`| 6= 0}. If the exact recovery condition (ERC),

ERC(S) < 1,

is satisfied, then the matching pursuit algorithm selects only vectors in {d`}`2S and the orthogonal
matching pursuit algorithm recovers x with at most |S| iterations.

Proof. At each iteration m, the MP and OMP algorithms selects a vector d` with ` 2 ⇤ if and
only if the correlation of the residual r(m) with vectors indexed by the complement of ⇤ is smaller
than the correlation with vectors indexed by ⇤: C(r(m),⇤c) < 1, where we define the correlation
of a vector h with vectors in ⇤c relative to ⇤,

C(h,⇤) =
maxm2⇤c |hh,dmi|
max`2⇤ |hh,d`i|

.

Let us first prove that for all ⇤ ✓ J1, NK,

sup
h2V⇤

C(h,⇤) 6 ERC(⇤). (6)

Let D†
⇤ = (DH

⇤D⇤)�1DH

⇤ be the Moore-Penrose pseudo-inverse of D⇤. We know that D⇤D
†
⇤ =

(D†
⇤)

HDH

⇤ is the orthogonal projector onto V⇤. Thus, if h 2 V⇤ and m 2 ⇤c, it holds that

|hh,dmi| =
���
D
(D†

⇤)
HDH

⇤ h,dm

E��� =
���
D
DH

⇤ h,D†
⇤dm

E��� 6
��DH

⇤ h
��
1

���D†
⇤dm

���
1

6
��DH

⇤ h
��
1 max

m02⇤c

���D†
⇤dm0

���
1
.

Since eD is the dual basis of D in the space V = span{d`}`2⇤, we know that eDH

⇤ = D†
⇤. Therefore,

it holds that

ERC(⇤) = max
m02⇤c

X

`2⇤

���
D
d̃`,dm0

E��� = max
m02⇤c

���eDH

⇤ dm0

���
1
= max

m02⇤c

���D†
⇤dm0

���
1
.

Moreover, we have ��DH

⇤ h
��
1 = max

`2⇤
|hh,d`i| .

As a consequence, it holds for all h 2 V⇤ that

max
m2⇤c

|hh,dmi| 6 ERC(⇤)max
`2⇤

|hh,d`i| ,

which proves (6).
We now prove the reverse inequality. Let m0 2 ⇤c be such that

m0 2 arg max
m2⇤c

X

`2⇤

���
D
d̃`,dm

E��� .
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Introducing
h =

X

`2⇤
sign

⇣D
d̃`,dm0

E⌘
d̃`

leads to

ERC(⇤) = max
m2⇤c

X

`2⇤

���
D
d̃`,dm0

E��� = |hh,dm0i| 6 max
m2⇤c

|hh,dmi| 6 C(h,⇤c)max
`2⇤

|hh,d`i| .

Since |hh,d`i| =
���sign

⇣D
d̃`,dm0

E⌘��� = 1, it results that ERC(⇤) 6 C(h,⇤c) and therefore,

ERC(⇤) 6 sup
h2V⇤

C(h,⇤c),

which, combined with (6), shows that

ERC(⇤) = sup
h2V⇤

C(h,⇤c).

Now, to prove the claim of the theorem, suppose that x = r(0) 2 VS and ERC(S) < 1. We
prove by induction that the MP algorithm selects only vectors in {d`}`2S . Suppose that the
first m < M vectors selected by the MP algorithm are in {d`}`2S , and thus, that r(m) 2 VS . If
r(m) 6= 0, then the condition ERC(S) < 1 implies that C(r(m),Sc) < 1 and thus the next vector
is selected in S. Since dim(VS) 6 |S|, the OMP algorithm converges in less that |S| iterations.
In the |S|th step, we are left with r(|S|) = (I�PV|S|�1

)x = 0 and hence, the algorithm stops.

Proposition 3.1. For any ⇤ ✓ J1, NK, we have that

ERC(⇤) 6 |⇤|µ(D)

1� (|⇤|� 1)µ(D)
.

Proof. We have shown in the proof of Theorem 2 that

ERC(⇤) = max
m2⇤c

���D†
⇤dm

���
1
.

Since D†
⇤ = (DH

⇤D⇤)�1DH

⇤ , we have

ERC(⇤) = max
m2⇤c

��(DH

⇤D⇤)
�1DH

⇤ dm

��
1
6
��(DH

⇤D⇤)
�1
��
1!1

max
m2⇤c

��DH

⇤ dm

��
1
, (7)

where we used the matrix norm k·k1!1 defined as

kAk1!1 = max
u2CN

u 6=0

kAuk1
kuk1

= max
`2J1,NK

ka`k1 (8)

for a matrix A = {a`}`2J1,NK. The second term of the upper bound in (8) equals

max
m2⇤c

��DH

⇤ dm

��
1
= max

m2⇤c

X

`2⇤
|hdm,d`i| .

6
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By definition of the coherence µ(D) of the dictionary D, each term |hdm,d`i| is smaller than µ(D).
Therefore,

max
m2⇤c

��DH

⇤ dm

��
1
6 max

m2⇤c

X

`2⇤
µ(D) = |⇤|µ(D). (9)

For the first term of the upper bound in (8), we can use the Van Neumann theorem to write that

��(DH

⇤D⇤)
�1
��
1!1

6
1X

k=0

��I|⇤| �DH

⇤D⇤

��k
1!1

=
1

1�
��I|⇤| �DH

⇤D⇤

��
1!1

.

Given that kd`k2 = 1 for all ` 2 J1, NK, we have
��I|⇤| �DH

⇤D⇤

��
1!1

= max
`02⇤

X

`2⇤
6̀=`

0

|hd`,d`0i| 6 max
`02⇤

X

`2⇤
`6=`

0

µ(D) = µ(D)(|⇤|� 1). (10)

Combining (7), (9), and (10) gives

ERC(⇤) 6 |⇤|µ(D)

1� (|⇤|� 1)µ(D)
.

Corollary 3.1. Let x = D↵ 2 CK , where ↵ 2 CN and denote S = supp↵. If the condition

|S| < 1

2

✓
1 +

1

µ(D)

◆

is satisfied, then the orthogonal matching pursuit algorithm recovers x in less than |S| iterations.

Proof. If

|S| < 1

2

✓
1 +

1

µ(D)

◆
,

then using Proposition 3.1, we have that

ERC(S) 6 |S|µ(D)

1� (|S|� 1)µ(D)
< 1,

and thus, we can invoke Theorem 2 to complete the proof.

7

l_m

(7)


