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Lecture 11: Matching Pursuit and Orthogonal Matching Pursuit

Céline Aubel (corrections by V. Morgenshtern)

Let D € CE*N be a dictionary of N > K vectors having unit ¢o-norm, i.e., ||dg||, = 1 for all
¢ € [1,N]. This dictionary is supposed to be complete, which means that it includes K linearly
independent vectors that define a basis of the signal space C¥ .

1 Matching Pursuit (MP)

The Matching Pursuit (MP) algorithm was introduced by S. Mallat and Z. Zhang in 1993. It
computes an s-term approximation of a signal x € C¥ in D, by iteratively selecting a single
dictionary vector at a time.

Principle of the MP algorithm. The algorithm starts by projecting x orthogonally onto a
vector dy,, o € [1, N],
X = <X7 d£0> dg, + I'(l),

rM) being the residual. Since rV) is orthogonal to dy,, it follows from Pythagoras theorem that

I3 = 16, o) * + [le 3.

In order to minimize ||r(} ||y, we must choose dg,, o € [1, N], such that |(x,dg,)| is maximum?,

that is,
Ly € arg max |(x,dy)]|.
L€[1,N]
The MP algorithm iterates this procedure by subdecomposing the residual. Assume that the mth
residual r(™) has already been computed for m > 0 (initially, we take r® = x). Then, the next
iteration chooses dy,,, £, € [1, N] such that?

Ly € arg max ‘<I'(m)7dg>
L€[1,N]

b

and projects (™ onto dy,, thus defining the (m + 1)th residual r(”+1),
r(m) = <r(m), dgm> dg,, + M+, (1)
Again, the orthogonality of r(™+Y) and d,, implies that

[
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Tn practice, it is sometimes computationally more efficient to find a vector dg, that is almost optimal, that is,
[(x,dr,)| > amaxeepr,ny [(x,de)|, where o € (0, 1] is a relaxation factor. In this case, the algorithm is referred to
as weak MP.

2This step becomes ‘<r(m), dg,, >’ > amaxeqi,N] ‘<r(m), de>‘ for weak MP with relaxation parameter a € (0, 1].



Summing (1) and (2) for m between 0 and M — 1 gives

M-1

— (m) (M)
x ﬂ;}<r ,dgm>dgm+l‘ (3)
and
M-l 2 2
I = 32 [ )+ ] @
m=0

Convergence of the MP algorithm. We can observe from (3) and (4) that the convergence

of the MP algorithm depends on the rate of decay of the residual ||r(m) ||; The following theorem
shows that it has an exponential decay.

Theorem 1 (Convergence of the MP algorithm). The residual r(™ computed by the MP
algorithm satisfies?

2 m
[ < (1= (D)™ 13,

where
pmin(D) = inf p(r,D) >0
reCk
r#0
and

r
r,D)= max |( ——,d
p(r, D) ee[u,wKnrnQ 4>

is the coherence of the vector r relative to the dictionary. As a consequence,
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Proof. For k € [0,m — 1], Pythagoras theorem stated in (2) implies that
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By definition of dg,, it holds that
(k)
r
o de
< [, >
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We have then

2 < sup (1—42(r,D)) =1— inf p?(r,D) =1- 2, (D).
2 r#0 r#0

Multiplying this last inequality for & between 0 and m — 1 and using the fact that r(®) = x yields

2 m
(7 < (1 - % (D)) .

. 2
3The residual satisfies ‘ r™| < (1 - a?pl, (D)™ [|x]|3 for weak MP with relaxation parameter o € (0,1].
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We now have to verify that pmin (D) > 0. By way of contradiction, assume that pmi, (D) = 0.
Then, one can find a sequence {X;, }nen of CX with [x,[|, = 1 such that

lim max |(x,,ds)| =0.
n—00 ¢€[1,N]

Since the unit sphere of CV is compact, there exists a subsequence {Zn, }ren Of {2y }nen that
converges to a unit vector z € CV, ||z||, = 1. It follows that

d)| = 1 d 0.
Z&lﬁml@ ol Jim eg[[lf%ﬂl%m ol =

Hence, (z,d) = 0 for all £ € [1, N]. Since {d/}sc[1,5 contains a basis for CK | necessarily, z = 0,
which contradicts the fact that ||z||, = 1. Therefore, pmin(D) > 0. As a result, 1 —a?pmin(D) < 1,
implying that lim,, . ||r(m) H2 = 0. We can conclude by noting that (3) and (4) becomes

o0

X — < (m) dem>dmz and |X||2 Z ’< ™, dy,, >’2

m=0 m=0

as M — oo. I

2  Orthogonal Matching Pursuit (OMP)

At each iteration m, the vector d,,, selected by the Matching Pursuit algorithm is a priori not

orthogonal to the previously selected vectors dy, , k € [0, m—1]. The Orthogonal Matching Pursuit

(OMP) algorithm improves the MP algorithm by orthogonalizing the directions of projections.
The Gram-Schmidt algorithm orthogonalizes dy,, with respect to {dék}ke[[o,m—l]]a

Uup :dgo
m—1
—dy, -y et 5)
k=0 |ukH2

The residual r(™ is projected onto u,, instead of dy,,

(m) H..(m H
(m) _ Mu L op(mD) ugr™ o D) = mthm ym) (D),
[[amlf; Junl I3

which yields the relation

H
(IK _ Umuﬂ;> r(m) _ r(m-‘rl).
a2

Since r(® = x and the vectors u,, are orthogonal, it results that

H
I, — Boug’ PRI L IS DURNY)
[uoll3 [uns—1l3

=(Ig—Py,,)x

where
M—1

H
Uy, (U)
Py, = 5 —mtml
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is the orthogonal projector onto the space Vys = span{um}me[[o’ M—1]- It follows that
x =Py, x+ M)

The Gram-Schmidt algorithm ensures that {dy, },e[o,1—1] is also a basis for V. The residual
r™) is the component of x that is orthogonal to Vy;. For m = M, (5) implies that

<r(M), uM> = <r(M),d,,M> .

Since V) has dimension M, there exists P < g such that x € Vp. We have then r®) = 0 and

Pl r(m d,
U,,.
o o

The algorithm stops after P < K iterations. The energy conservation resulting from the
decomposition is

N~ e d))

Ixll; = >

o a3

To expand x over the original dictionary vectors d,,,, we can perform a change of basis. The
OMP algorithm is summarized as Algorithm 1.

Algorithm 1: Orthogonal Matching Pursuit (OMP)
(CKX N

Input : D, a dictionary in
X, a signal in CX,
s, the sparsity level of the ideal signal.

Output: @, a sparse representation of the signal in CV,
7, the support of the estimated signal, i.e., the set containing the position of

the nonzero elements of a.

1: Initialize the sparse representation a(?) = 0, the index set Z(9) = (), the matrix of chosen
atoms D(®) =[], and the iteration counter ¢ = 1.
2: while t < s do
3:  Calculate the residual:
r) — x — DD ut-1)
4:  Find the index of the column of D that is most correlated with r(®):
i) = argmax |[(x®,D;)|.

gaoey

If the maximum occurs for multiple indices, choose one arbitrarily.
5. Augment the index set Z() = 7= y {i(®}

and the matrix of chosen atoms D) = concat(D*~1), D).
6:  Update the signal estimate by solving the least square problem:

oY) = argmin |x — DOa|s, ie., alt) = D®'x

8: end while
9 a=a) and T =710,
10: return o, T




3 Exact Recovery Conditions
~ canonical
Theorem 2. For A C [1,N], let {d¢}sea be the dual basis of {ds}sen in )] = span{d,} and

define
BRO() = g 3= [{de dn))

where A¢ = [1, N] \ A denotes the complement of A. Let x = Da € CX| where @ € CV, and
denote § = suppa = {¢ € [1, N]: |ayg| # 0}. If the exact recovery condition (ERC),

ERC(S) < 1,

is satisfied, then the matching pursuit algorithm selects only vectors in {d}scs and the orthogonal
matching pursuit algorithm recovers x with at most |S| iterations.

Proof. At each iteration m, the MP and OMP algorithms selects a vector dy with £ € A if and
only if the correlation of the residual r™ with vectors indexed by the complement of A is smaller
than the correlation with vectors indexed by A: C (r(m), A€) < 1, where we define the correlation
of a vector h with vectors in A€ relative to A,

maXmeAe | <h7 dm> |

h A .
ClhA) = maxgen |(h, dg)|

Let us first prove that for all A C [1, NJ,

sup C(h,A) < ERC(A). (6)
heVy

Let D}L\ = (DKDA)_IDf be the Moore-Penrose pseudo-inverse of Dj. We know that DADT =
(D)EDX is the orthogonal projector onto Va. Thus, if h € V) and m € A, it holds that

(b, dy)]| = \<<DR>HDEh7dm>\ = |(Dn.Did,.)| < [DF]|, [Dhdn||

HD%hH max.

Adur||

Since D is the dual basis of D in the space V = span{dy}seca, we know that DI = D}L\. Therefore,
it holds that

BRO(A) = max 3 |(do )

= max
m/eNC

= max

DA dy 1 miehe DRdm/

1

Moreover, we have
IDAh|, = max|(h, 7))

As a consequence, it holds for all h € V, that

h, < ERC(A h,dg)l,
max [(h, dp)| < ERC(A) max|[(h, dy)|

which proves (6).
We now prove the reverse inequality. Let mg € A be such that

mo € arg maxz ‘<(~i@,dm>‘ .
JZSN
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Introducing

h= Zsign (<(~14, dm0>) &g

LeA

leads to

ERC(A) = Y |(dedung )| = (. dung)| < max (b, dyn)]| < C(h, A) max| (b, d)]

leA

Since |(h,dg)| =

sign (<(~ig, dm0>)‘ =1, it results that ERC(A) < C(h, A°) and therefore,

ERC(A) < sup C(h,A°),
heVy

which, combined with (6), shows that

ERC(A) = sup C(h, A°).
hevy

Now, to prove the claim of the theorem, suppose that x = r(®) € Vs and ERC(S) < 1. We
prove by induction that the MP algorithm selects only vectors in {ds}scs. Suppose that the
first m < M vectors selected by the MP algorithm are in {d}scs, and thus, that (™ e Vg, If
r(™ =£ 0, then the condition ERC(S) < 1 implies that C(r(™),8¢) < 1 and thus the next vector
is selected in S. Since dim(Vs) < |S|, the OMP algorithm converges in less that |S| iterations.

In the |S|th step, we are left with r(8h = (I— PV|5\71)X = 0 and hence, the algorithm stops.

Proposition 3.1. For any A C [1, N]|, we have that

|A|u(D)
L—(JA] = )pu(D)’

ERC(A) <

Proof. We have shown in the proof of Theorem 2 that

ERC(A) = DTde.
RO = e [[Padn]

Since Dj\ = (D¥D,)'D¥, we have

ERC(A) = max (DFD) "D d|, < [(DFDA),_, max [Dfd .

meA©

where we used the matrix norm ||-||;_,; defined as

|Aull;
A = max = max |a
|| Hl%l uuei:é\, ”qu 01N H @”1

for a matrix A = {a}c[1,n].- The second term of the upper bound in (7) equals

DY d||, = max » [(dy,dy)|.
LeA

max
meA©

O
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By definition of the coherence u(D) of the dictionary D, each term |{(d,,, dg)| is smaller than (D).
Therefore,

max [[Dfdy, |, < max Zu = |A|u(D). 9)
For the first term of the upper bound in (7), we can use the Neumann theorem to write that

1
1- HI\AI - DfDAHl—)l.

o0
_ k
D)L, <D T - DDA}, =
k=0

Given that ||d||, = 1 for all £ € [1, N], we have

[Ls) — DYDA|,_,, = maXZ (dyg, d)| maxZu D)(|A| —1). (10)
e e
£ £

Combining (7), (9), and (10) gives

| A (T
— (|A| = )pu(D)’

ERC(A) < ;

O

Corollary 3.1. Let x = Da € C¥, where a € CV and denote S = supp a.. If the condition

|3<;<1+#(1D)>

is satisfied, then the orthogonal matching pursuit algorithm recovers x in less than |S| iterations.

<0 )

then using Proposition 3.1, we have that

Proof. If

|S|u(D)
ERC(S) < <1,
1= (S| = 1)u(D)
and thus, we can invoke Theorem 2 to complete the proof. O



