## Mathematical Methods for Machine Learning and Signal Processing SS 2019 <br> Lecture 11: Matching Pursuit and Orthogonal Matching Pursuit <br> Céline Aubel (corrections by V. Morgenshtern)

Let $\mathbf{D} \in \mathbb{C}^{K \times N}$ be a dictionary of $N>K$ vectors having unit $\ell_{2}$-norm, i.e., $\left\|\mathbf{d}_{\ell}\right\|_{2}=1$ for all $\ell \in \llbracket 1, N \rrbracket$. This dictionary is supposed to be complete, which means that it includes $K$ linearly independent vectors that define a basis of the signal space $\mathbb{C}^{K}$.

## 1 Matching Pursuit (MP)

The Matching Pursuit (MP) algorithm was introduced by S. Mallat and Z. Zhang in 1993. It computes an $s$-term approximation of a signal $\mathbf{x} \in \mathbb{C}^{K}$ in $\mathbf{D}$, by iteratively selecting a single dictionary vector at a time.

Principle of the MP algorithm. The algorithm starts by projecting $\mathbf{x}$ orthogonally onto a vector $\mathbf{d}_{\ell_{0}}, \ell_{0} \in \llbracket 1, N \rrbracket$,

$$
\mathbf{x}=\left\langle\mathbf{x}, \mathbf{d}_{\ell_{0}}\right\rangle \mathbf{d}_{\ell_{0}}+\mathbf{r}^{(1)}
$$

$\mathbf{r}^{(1)}$ being the residual. Since $\mathbf{r}^{(1)}$ is orthogonal to $\mathbf{d}_{\ell_{0}}$, it follows from Pythagoras theorem that

$$
\|\mathbf{x}\|_{2}^{2}=\left|\left\langle\mathbf{x}, \mathbf{d}_{\ell_{0}}\right\rangle\right|^{2}+\left\|\mathbf{r}^{(1)}\right\|_{2}^{2}
$$

In order to minimize $\left\|\mathbf{r}^{(1)}\right\|_{2}$, we must choose $\mathbf{d}_{\ell_{0}}, \ell_{0} \in \llbracket 1, N \rrbracket$, such that $\left|\left\langle\mathbf{x}, \mathbf{d}_{\ell_{0}}\right\rangle\right|$ is maximum ${ }^{1}$, that is,

$$
\ell_{0} \in \underset{\ell \in \llbracket 1, N \rrbracket}{\arg \max }\left|\left\langle\mathbf{x}, \mathbf{d}_{\ell}\right\rangle\right| .
$$

The MP algorithm iterates this procedure by subdecomposing the residual. Assume that the $m$ th residual $\mathbf{r}^{(m)}$ has already been computed for $m \geqslant 0$ (initially, we take $\mathbf{r}^{(0)}=\mathbf{x}$ ). Then, the next iteration chooses $\mathbf{d}_{\ell_{m}}, \ell_{m} \in \llbracket 1, N \rrbracket$ such that ${ }^{2}$

$$
\ell_{m} \in \underset{\ell \in \llbracket 1, N \rrbracket}{\arg \max }\left|\left\langle\mathbf{r}^{(m)}, \mathbf{d}_{\ell}\right\rangle\right|,
$$

and projects $\mathbf{r}^{(m)}$ onto $\mathbf{d}_{\ell_{m}}$, thus defining the $(m+1)$ th residual $\mathbf{r}^{(m+1)}$,

$$
\begin{equation*}
\mathbf{r}^{(m)}=\left\langle\mathbf{r}^{(m)}, \mathbf{d}_{\ell_{m}}\right\rangle \mathbf{d}_{\ell_{m}}+\mathbf{r}^{(m+1)} . \tag{1}
\end{equation*}
$$

Again, the orthogonality of $\mathbf{r}^{(m+1)}$ and $\mathbf{d}_{\ell_{m}}$ implies that

$$
\begin{equation*}
\left\|\mathbf{r}^{(m)}\right\|_{2}^{2}=\left|\left\langle\mathbf{r}^{(m)}, \mathbf{d}_{\ell_{m}}\right\rangle\right|^{2}+\left\|\mathbf{r}^{(m+1)}\right\|_{2}^{2} \tag{2}
\end{equation*}
$$

[^0]Summing (1) and (2) for $m$ between 0 and $M-1$ gives

$$
\begin{equation*}
\mathbf{x}=\sum_{m=0}^{M-1}\left\langle\mathbf{r}^{(m)}, \mathbf{d}_{\ell_{m}}\right\rangle \mathbf{d}_{\ell_{m}}+\mathbf{r}^{(M)} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\mathbf{x}\|_{2}^{2}=\sum_{m=0}^{M-1}\left|\left\langle\mathbf{r}^{(m)}, \mathbf{d}_{\ell_{m}}\right\rangle\right|^{2}+\left\|\mathbf{r}^{(M)}\right\|_{2}^{2} \tag{4}
\end{equation*}
$$

Convergence of the MP algorithm. We can observe from (3) and (4) that the convergence of the MP algorithm depends on the rate of decay of the residual $\left\|\mathbf{r}^{(m)}\right\|_{2}^{2}$. The following theorem shows that it has an exponential decay.

Theorem 1 (Convergence of the MP algorithm). The residual $\mathbf{r}^{(m)}$ computed by the MP algorithm satisfies ${ }^{3}$

$$
\left\|\mathbf{r}^{(m)}\right\|_{2}^{2} \leqslant\left(1-\mu_{\min }^{2}(\mathbf{D})\right)^{m}\|\mathbf{x}\|_{2}^{2}
$$

where

$$
\mu_{\min }(\mathbf{D})=\inf _{\substack{\mathbf{r} \in \mathbb{C}^{K} \\ \mathbf{r} \neq \mathbf{0}}} \mu(\mathbf{r}, \mathbf{D})>0
$$

and

$$
\mu(\mathbf{r}, \mathbf{D})=\max _{\ell \in \llbracket 1, N \rrbracket}\left|\left\langle\frac{\mathbf{r}}{\|\mathbf{r}\|_{2}}, \mathbf{d}_{\ell}\right\rangle\right| \leqslant 1
$$

is the coherence of the vector $\mathbf{r}$ relative to the dictionary. As a consequence,

$$
\mathbf{x}=\sum_{m=0}^{\infty}\left\langle\mathbf{r}^{(m)}, \mathbf{d}_{\ell_{m}}\right\rangle \mathbf{d}_{\ell_{m}} \quad \text { and } \quad\|\mathbf{x}\|_{2}^{2}=\sum_{m=0}^{\infty}\left|\left\langle\mathbf{r}^{(m)}, \mathbf{d}_{\ell_{m}}\right\rangle\right|^{2}
$$

Proof. For $k \in \llbracket 0, m-1 \rrbracket$, Pythagoras theorem stated in (2) implies that

$$
\frac{\left\|\mathbf{r}^{(k+1)}\right\|_{2}^{2}}{\left\|\mathbf{r}^{(k)}\right\|_{2}^{2}}=1-\left|\left\langle\frac{\mathbf{r}^{(k)}}{\left\|\mathbf{r}^{(k)}\right\|_{2}}, \mathbf{d}_{\ell_{k}}\right\rangle\right|^{2}
$$

By definition of $\mathbf{d}_{\ell_{k}}$, it holds that

$$
\frac{\left\|\mathbf{r}^{(k+1)}\right\|_{2}^{2}}{\left\|\mathbf{r}^{(k)}\right\|_{2}^{2}}=1-\max _{\ell \in \llbracket 1, N \rrbracket}\left|\left\langle\frac{\mathbf{r}^{(k)}}{\left\|\mathbf{r}^{(k)}\right\|_{2}}, \mathbf{d}_{\ell}\right\rangle\right|^{2}=1-\mu^{2}\left(\mathbf{r}^{(k)}, \mathbf{D}\right)
$$

We have then

$$
\frac{\left\|\mathbf{r}^{(k+1)}\right\|_{2}^{2}}{\left\|\mathbf{r}^{(k)}\right\|_{2}^{2}} \leqslant \sup _{\substack{\mathbf{r} \in \mathbb{C}^{K} \\ \mathbf{r} \neq \mathbf{0}}}\left(1-\mu^{2}(\mathbf{r}, \mathbf{D})\right)=1-\inf _{\substack{\mathbf{r} \in \mathbb{C}^{K} \\ \mathbf{r} \neq \mathbf{0}}} \mu^{2}(\mathbf{r}, \mathbf{D})=1-\mu_{\min }^{2}(\mathbf{D})
$$

Multiplying this last inequality for $k$ between 0 and $m-1$ and using the fact that $\mathbf{r}^{(0)}=\mathbf{x}$ yields

$$
\left\|\mathbf{r}^{(m)}\right\|_{2}^{2} \leqslant\left(1-\alpha^{2} \mu_{\min }^{2}(\mathbf{D})\right)^{m}\|\mathbf{x}\|_{2}^{2}
$$

[^1]We now have to verify that $\mu_{\min }(\mathbf{D})>0$. By way of contradiction, assume that $\mu_{\text {min }}(\mathbf{D})=0$. Then, one can find a sequence $\left\{\mathbf{x}_{n}\right\}_{n \in \mathbb{N}}$ of $\mathbb{C}^{K}$ with $\left\|\mathbf{x}_{n}\right\|_{2}=1$ such that

$$
\lim _{n \rightarrow \infty} \max _{\ell \in \llbracket 1, N \rrbracket}\left|\left\langle\mathbf{x}_{n}, \mathbf{d}_{\ell}\right\rangle\right|=0
$$

Since the unit sphere of $\mathbb{C}^{N}$ is compact, there exists a subsequence $\left\{\mathbf{z}_{n_{k}}\right\}_{k \in \mathbb{N}}$ of $\left\{\mathbf{z}_{n}\right\}_{n \in \mathbb{N}}$ that converges to a unit vector $\mathbf{z} \in \mathbb{C}^{N},\|\mathbf{z}\|_{2}=1$. It follows that

$$
\max _{\ell \in \llbracket 1, N \rrbracket}\left|\left\langle\mathbf{z}, \mathbf{d}_{\ell}\right\rangle\right|=\lim _{k \rightarrow \infty} \max _{\ell \in \llbracket 1, N \rrbracket}\left|\left\langle\mathbf{z}_{n_{k}}, \mathbf{d}_{\ell}\right\rangle\right|=0 .
$$

Hence, $\left\langle\mathbf{z}, \mathbf{d}_{\ell}\right\rangle=0$ for all $\ell \in \llbracket 1, N \rrbracket$. Since $\left\{\mathbf{d}_{\ell}\right\}_{\ell \in \llbracket 1, N \rrbracket}$ contains a basis for $\mathbb{C}^{K}$, necessarily, $\mathbf{z}=\mathbf{0}$, which contradicts the fact that $\|\mathbf{z}\|_{2}=1$. Therefore, $\mu_{\min }(\mathbf{D})>0$. As a result, $1-\alpha^{2} \mu_{\min }(\mathbf{D})<1$, implying that $\lim _{m \rightarrow \infty}\left\|\mathbf{r}^{(m)}\right\|_{2}=0$. We can conclude by noting that (3) and (4) becomes

$$
\mathbf{x}=\sum_{m=0}^{\infty}\left\langle\mathbf{r}^{(m)}, \mathbf{d}_{\ell_{m}}\right\rangle \mathbf{d}_{m_{\ell}} \text { and }\|\mathbf{x}\|_{2}^{2}=\sum_{m=0}^{\infty}\left|\left\langle\mathbf{r}^{(m)}, \mathbf{d}_{\ell_{m}}\right\rangle\right|^{2}
$$

as $M \rightarrow \infty$.

## 2 Orthogonal Matching Pursuit (OMP)

At each iteration $m$, the vector $\mathbf{d}_{\ell_{m}}$ selected by the Matching Pursuit algorithm is a priori not orthogonal to the previously selected vectors $\mathbf{d}_{\ell_{k}}, k \in \llbracket 0, m-1 \rrbracket$. The Orthogonal Matching Pursuit (OMP) algorithm improves the MP algorithm by orthogonalizing the directions of projections.

The Gram-Schmidt algorithm orthogonalizes $\mathbf{d}_{\ell_{m}}$ with respect to $\left\{\mathbf{d}_{\ell_{k}}\right\}_{k \in \llbracket 0, m-1 \rrbracket}$,

$$
\begin{align*}
& \mathbf{u}_{0}=\mathbf{d}_{\ell_{0}} \\
& \mathbf{u}_{m}=\mathbf{d}_{\ell_{m}}-\sum_{k=0}^{m-1} \frac{\left\langle\mathbf{d}_{\ell_{m}}, \mathbf{u}_{k}\right\rangle}{\left\|\mathbf{u}_{k}\right\|_{2}^{2}} \mathbf{u}_{k} . \tag{5}
\end{align*}
$$

The residual $\mathbf{r}^{(m)}$ is projected onto $\mathbf{u}_{m}$ instead of $\mathbf{d}_{\ell_{m}}$,

$$
\mathbf{r}^{(m)}=\frac{\left\langle\mathbf{r}^{(m)}, \mathbf{u}_{m}\right\rangle}{\left\|\mathbf{u}_{m}\right\|_{2}^{2}} \mathbf{u}_{m}+\mathbf{r}^{(m+1)}=\frac{\mathbf{u}_{m}^{H} \mathbf{r}^{(m)}}{\left\|\mathbf{u}_{m}\right\|_{2}^{2}} \mathbf{u}_{m}+\mathbf{r}^{(m+1)}=\frac{\mathbf{u}_{m} \mathbf{u}_{m}^{H}}{\left\|\mathbf{u}_{m}\right\|_{2}^{2}} \mathbf{r}^{(m)}+\mathbf{r}^{(m+1)}
$$

which yields the relation

$$
\left(\mathbf{I}_{K}-\frac{\mathbf{u}_{m} \mathbf{u}_{m}^{H}}{\left\|\mathbf{u}_{m}\right\|_{2}^{2}}\right) \mathbf{r}^{(m)}=\mathbf{r}^{(m+1)}
$$

Since $\mathbf{r}^{(0)}=\mathbf{x}$ and the vectors $\mathbf{u}_{m}$ are orthogonal, it results that

$$
\underbrace{\left(\mathbf{I}_{K}-\frac{\mathbf{u}_{0} \mathbf{u}_{0}^{H}}{\left\|\mathbf{u}_{0}\right\|_{2}^{2}}\right) \ldots\left(\mathbf{I}_{K}-\frac{\mathbf{u}_{M-1} \mathbf{u}_{M-1}^{H}}{\left\|\mathbf{u}_{M-1}\right\|_{2}^{2}}\right) \mathbf{x}}_{=\left(\mathbf{I}_{K}-\mathbf{P}_{\mathcal{V}_{M}}\right) \mathbf{x}}=\mathbf{r}^{(M)}
$$

where

$$
\mathbf{P}_{\mathcal{V}_{M}}=\sum_{m=0}^{M-1} \frac{\mathbf{u}_{m}\left(\mathbf{u}_{m}\right)^{H}}{\left\|\mathbf{u}_{m}\right\|_{2}^{2}}
$$

is the orthogonal projector onto the space $\mathcal{V}_{M}=\operatorname{span}\left\{\mathbf{u}_{m}\right\}_{m \in \llbracket 0, M-1 \rrbracket}$. It follows that

$$
\mathbf{x}=\mathbf{P}_{\mathcal{V}_{M}} \mathbf{x}+\mathbf{r}^{(M)}
$$

The Gram-Schmidt algorithm ensures that $\left\{\mathbf{d}_{m}\right\}_{m \in \llbracket 0, M-1 \rrbracket}$ is also a basis for $\mathcal{V}_{M}$. The residual $\mathbf{r}^{(M)}$ is the component of $\mathbf{x}$ that is orthogonal to $\mathcal{V}_{M}$. For $m=M$, (5) implies that

$$
\left\langle\mathbf{r}^{(M)}, \mathbf{u}_{M}\right\rangle=\left\langle\mathbf{r}^{(M)}, \mathbf{d}_{L M}\right\rangle
$$

Since $\mathcal{V}_{M}$ has dimension $M$, there exists $P \leqslant K$ such that $\mathbf{x} \in \mathcal{V}_{P}$. We have then $\mathbf{r}^{(P)}=0$ and

$$
\mathbf{x}=\sum_{m=0}^{P-1} \frac{\left\langle\mathbf{r}^{(m)}, \mathbf{d}_{L_{m}}\right\rangle}{\left\|\mathbf{u}_{m}\right\|_{2}^{2}} \mathbf{u}_{m} .
$$

The algorithm stops after $P \leqslant K$ iterations. The energy conservation resulting from the decomposition is

$$
\|\mathbf{x}\|_{2}^{2}=\sum_{m=0}^{M-1} \frac{\left|\left\langle\mathbf{r}^{(m)}, \mathbf{d}_{L^{\prime \prime}}\right\rangle\right|^{2}}{\left\|\mathbf{u}_{m}\right\|_{2}^{2}}
$$

To expand $\mathbf{x}$ over the original dictionary vectors $\mathbf{d}_{m}$, we can perform a change of basis. The OMP algorithm is summarized as Algorithm 1.

```
Algorithm 1: Orthogonal Matching Pursuit (OMP)
    Input : \(\mathbf{D}\), a dictionary in \(\mathbb{C}^{K \times N}\),
                    \(\mathbf{x}\), a signal in \(\mathbb{C}^{K}\),
                    \(s\), the sparsity level of the ideal signal.
    Output: \(\widehat{\boldsymbol{\alpha}}\), a sparse representation of the signal in \(\mathbb{C}^{N}\),
                    \(\mathcal{I}\), the support of the estimated signal, i.e., the set containing the position of
    the nonzero elements of \(\hat{\boldsymbol{\alpha}}\).
        : Initialize the sparse representation \(\boldsymbol{\alpha}^{(0)}=0\), the index set \(\mathcal{I}^{(0)}=\emptyset\), the matrix of chosen
        atoms \(\mathbf{D}^{(0)}=[]\), and the iteration counter \(t=1\).
        while \(t<s\) do
        Calculate the residual:
        \(\mathbf{r}^{(t)}=\mathbf{x}-\mathbf{D}^{(t-1)} \boldsymbol{\alpha}^{(t-1)}\).
        Find the index of the column of \(\mathbf{D}\) that is most correlated with \(\mathbf{r}^{(t)}\) :
        \(i^{(t)}=\underset{j=1, \ldots, N}{\operatorname{argmax}}\left|\left\langle\mathbf{r}^{(t)}, \mathbf{D}_{j}\right\rangle\right|\).
        If the maximum occurs for multiple indices, choose one arbitrarily.
        Augment the index set \(\mathcal{I}^{(t)}=\mathcal{I}^{(t-1)} \cup\left\{i^{(t)}\right\}\)
        and the matrix of chosen atoms \(\mathbf{D}^{(t)}=\operatorname{concat}\left(\mathbf{D}^{(t-1)}, \mathbf{D}_{\left.i^{(t)}\right)}\right)\).
        Update the signal estimate by solving the least square problem:
        \(\boldsymbol{\alpha}^{(t)}=\underset{\alpha \in C^{N}}{\operatorname{argmin}}\left\|\mathbf{x}-\mathbf{D}^{(t)} \boldsymbol{\alpha}\right\|_{2}\), i.e., \(\boldsymbol{\alpha}^{(t)}=\mathbf{D}^{(t)^{\dagger} \mathbf{x}}\).
        \(\boldsymbol{\alpha} \in \mathbb{C}^{N}\)
        \(t=t+1\).
    end while
    \(\widehat{\boldsymbol{\alpha}}=\boldsymbol{\alpha}^{(t)}\) and \(\mathcal{I}=\mathcal{I}^{(t)}\).
    return \(\widehat{\alpha}, \mathcal{I}\)
```


## 3 Exact Recovery Conditions

Theorem 2. For $\Lambda \subseteq \llbracket 1, N \rrbracket$, let $\left\{\tilde{\mathbf{d}}_{\ell}\right\}_{\ell \in \Lambda}$ be the dual basis of $\left\{\mathbf{d}_{\ell}\right\}_{\ell \in \Lambda}$ in $\mathcal{V}_{\Lambda}=\operatorname{span}\left\{\mathbf{d}_{\ell}\right\}_{\Lambda}$ and define

$$
\operatorname{ERC}(\Lambda)=\max _{m \in \Lambda^{c}} \sum_{\ell \in \Lambda}\left|\left\langle\tilde{\mathbf{d}}_{\ell}, \mathbf{d}_{m}\right\rangle\right|,
$$

where $\Lambda^{c}=\llbracket 1, N \rrbracket \backslash \Lambda$ denotes the complement of $\Lambda$. Let $\mathbf{x}=\mathbf{D} \boldsymbol{\alpha} \in \mathbb{C}^{K}$, where $\boldsymbol{\alpha} \in \mathbb{C}^{N}$, and denote $\mathcal{S}=\operatorname{supp} \alpha=\left\{\ell \in \llbracket 1, N \rrbracket:\left|\alpha_{\ell}\right| \neq 0\right\}$. If the exact recovery condition (ERC),

$$
\operatorname{ERC}(\mathcal{S})<1
$$

is satisfied, then the matching pursuit algorithm selects only vectors in $\left\{\mathbf{d}_{\ell}\right\}_{\ell \in \mathcal{S}}$ and the orthogonal matching pursuit algorithm recovers $\mathbf{x}$ with at most $|\mathcal{S}|$ iterations.

Proof. At each iteration $m$, the MP and OMP algorithms selects a vector $\mathbf{d}_{\ell}$ with $\ell \in \Lambda$ if and only if the correlation of the residual $\mathbf{r}^{(m)}$ with vectors indexed by the complement of $\Lambda$ is smaller than the correlation with vectors indexed by $\Lambda: C\left(\mathbf{r}^{m}, \Lambda^{c}\right)<1$, where we define the correlation of a vector $\mathbf{h}$ with vectors in $\Lambda^{c}$ relative to $\Lambda$,

$$
C(\mathbf{h}, \Lambda)=\frac{\max _{m \in \Lambda^{c}}\left|\left\langle\mathbf{h}, \mathbf{d}_{m}\right\rangle\right|}{\max _{\ell \in \Lambda}\left|\left\langle\mathbf{h}, \mathbf{d}_{\ell}\right\rangle\right|} .
$$

Let us first prove that for all $\Lambda \subseteq \llbracket 1, N \rrbracket$,

$$
\begin{equation*}
\sup _{\mathbf{h} \in \mathcal{V}_{\Lambda}} C(\mathbf{h}, \Lambda) \leqslant \operatorname{ERC}(\Lambda) \tag{6}
\end{equation*}
$$

Let $\mathbf{D}_{\Lambda}^{\dagger}=\left(\mathbf{D}_{\Lambda}^{H} \mathbf{D}_{\Lambda}\right)^{-1} \mathbf{D}_{\Lambda}^{H}$ be the Moore-Penrose pseudo-inverse of $\mathbf{D}_{\Lambda}$. We know that $\mathbf{D}_{\Lambda} \mathbf{D}_{\Lambda}^{\dagger}=$ $\left(\mathbf{D}_{\Lambda}^{\dagger}\right)^{H} \mathbf{D}_{\Lambda}^{H}$ is the orthogonal projector onto $\mathcal{V}_{\Lambda}$. Thus, if $\mathbf{h} \in \mathcal{V}_{\Lambda}$ and $m \in \Lambda^{c}$, it holds that

$$
\begin{aligned}
\left|\left\langle\mathbf{h}, \mathbf{d}_{m}\right\rangle\right| & =\left|\left\langle\left(\mathbf{D}_{\Lambda}^{\dagger}\right)^{H} \mathbf{D}_{\Lambda}^{H} \mathbf{h}, \mathbf{d}_{m}\right\rangle\right|=\left|\left\langle\mathbf{D}_{\Lambda}^{H} \mathbf{h}, \mathbf{D}_{\Lambda}^{\dagger} \mathbf{d}_{m}\right\rangle\right| \leqslant\left\|\mathbf{D}_{\Lambda}^{H} \mathbf{h}\right\|_{\infty}\left\|\mathbf{D}_{\Lambda}^{\dagger} \mathbf{d}_{m}\right\|_{1} \\
& \leqslant\left\|\mathbf{D}_{\Lambda}^{H} \mathbf{h}\right\|_{\infty} \max _{m^{\prime} \in \Lambda^{c}}\left\|\mathbf{D}_{\Lambda}^{\dagger} \mathbf{d}_{m^{\prime}}\right\|_{1} .
\end{aligned}
$$

Since $\widetilde{\mathbf{D}}$ is the dual basis of $\mathbf{D}$ in the space $\mathcal{V}=\operatorname{span}\left\{\mathbf{d}_{\ell}\right\}_{\ell \in \Lambda}$, we know that $\widetilde{\mathbf{D}}_{\Lambda}^{H}=\mathbf{D}_{\Lambda}^{\dagger}$. Therefore, it holds that

$$
\operatorname{ERC}(\Lambda)=\max _{m^{\prime} \in \Lambda^{c}} \sum_{\ell \in \Lambda}\left|\left\langle\tilde{\mathbf{d}}_{\ell}, \mathbf{d}_{m^{\prime}}\right\rangle\right|=\max _{m^{\prime} \in \Lambda^{c}}\left\|\widetilde{\mathbf{D}}_{\Lambda}^{H} \mathbf{d}_{m^{\prime}}\right\|_{1}=\max _{m^{\prime} \in \Lambda^{c}}\left\|\mathbf{D}_{\Lambda}^{\dagger} \mathbf{d}_{m^{\prime}}\right\|_{1} .
$$

Moreover, we have

$$
\left\|\mathbf{D}_{\Lambda}^{H} \mathbf{h}\right\|_{\infty}=\max _{\ell \in \Lambda}\left|\left\langle\mathbf{h}, \mathbf{d}_{\ell}\right\rangle\right| .
$$

As a consequence, it holds for all $\mathbf{h} \in \mathcal{V}_{\Lambda}$ that

$$
\max _{m \in \Lambda^{c}}\left|\left\langle\mathbf{h}, \mathbf{d}_{m}\right\rangle\right| \leqslant \operatorname{ERC}(\Lambda) \max _{\ell \in \Lambda}\left|\left\langle\mathbf{h}, \mathbf{d}_{\ell}\right\rangle\right|,
$$

which proves (6).
We now prove the reverse inequality. Let $m_{0} \in \Lambda^{c}$ be such that

$$
m_{0} \in \underset{m \in \Lambda^{c}}{\arg \max } \sum_{\ell \in \Lambda}\left|\left\langle\tilde{\mathbf{d}}_{\ell}, \mathbf{d}_{m}\right\rangle\right| .
$$

Introducing

$$
\mathbf{h}=\sum_{\ell \in \Lambda} \operatorname{sign}\left(\left\langle\tilde{\mathbf{d}}_{\ell}, \mathbf{d}_{m_{0}}\right\rangle\right) \tilde{\mathbf{d}}_{\ell}
$$

leads to

$$
\operatorname{ERC}(\Lambda)=\quad \sum_{\ell \in \Lambda}\left|\left\langle\tilde{\mathbf{d}}_{\ell}, \mathbf{d}_{m_{0}}\right\rangle\right|=\left|\left\langle\mathbf{h}, \mathbf{d}_{m_{0}}\right\rangle\right| \leqslant \max _{m \in \Lambda^{c}}\left|\left\langle\mathbf{h}, \mathbf{d}_{m}\right\rangle\right| \leqslant C\left(\mathbf{h}, \Lambda^{c}\right) \max _{\ell \in \Lambda}\left|\left\langle\mathbf{h}, \mathbf{d}_{\ell}\right\rangle\right| .
$$

Since $\left|\left\langle\mathbf{h}, \mathbf{d}_{\ell}\right\rangle\right|=\left|\operatorname{sign}\left(\left\langle\tilde{\mathbf{d}}_{\ell}, \mathbf{d}_{m_{0}}\right\rangle\right)\right|=1$, it results that $\operatorname{ERC}(\Lambda) \leqslant C\left(\mathbf{h}, \Lambda^{c}\right)$ and therefore,

$$
\operatorname{ERC}(\Lambda) \leqslant \sup _{\mathbf{h} \in \mathcal{V}_{\Lambda}} C\left(\mathbf{h}, \Lambda^{c}\right)
$$

which, combined with (6), shows that

$$
\operatorname{ERC}(\Lambda)=\sup _{\mathbf{h} \in \mathcal{V}_{\Lambda}} C\left(\mathbf{h}, \Lambda^{c}\right)
$$

Now, to prove the claim of the theorem, suppose that $\mathbf{x}=\mathbf{r}^{(0)} \in \mathcal{V}_{\mathcal{S}}$ and $\operatorname{ERC}(\mathcal{S})<1$. We prove by induction that the MP algorithm selects only vectors in $\left\{\mathbf{d}_{\ell}\right\}_{\ell \in \mathcal{S}}$. Suppose that the first $m<M$ vectors selected by the MP algorithm are in $\left\{\mathbf{d}_{\ell}\right\}_{\ell \in \mathcal{S}}$, and thus, that $\mathbf{r}^{(m)} \in \mathcal{V}_{\mathcal{S}}$. If $\mathbf{r}^{(m)} \neq \mathbf{0}$, then the condition $\operatorname{ERC}(\mathcal{S})<1$ implies that $C\left(\mathbf{r}^{(m)}, \mathcal{S}^{c}\right)<1$ and thus the next vector is selected in $\mathcal{S}$. Since $\operatorname{dim}\left(\mathcal{V}_{\mathcal{S}}\right) \leqslant|\mathcal{S}|$, the OMP algorithm converges in less that $|\mathcal{S}|$ iterations. In the $|\mathcal{S}|$ th step, we are left with $\mathbf{r}^{(|\mathcal{S}|)}=\left(\mathbf{I}-\mathbf{P}_{\mathcal{V}_{|\mathcal{S}|-1}}\right) \mathbf{x}=\mathbf{0}$ and hence, the algorithm stops.

Proposition 3.1. For any $\Lambda \subseteq \llbracket 1, N \rrbracket$, we have that

$$
\operatorname{ERC}(\Lambda) \leqslant \frac{|\Lambda| \mu(\mathbf{D})}{1-(|\Lambda|-1) \mu(\mathbf{D})}
$$

Proof. We have shown in the proof of Theorem 2 that

$$
\operatorname{ERC}(\Lambda)=\max _{m \in \Lambda^{c}}\left\|\mathbf{D}_{\Lambda}^{\dagger} \mathbf{d}_{m}\right\|_{1}
$$

Since $\mathbf{D}_{\Lambda}^{\dagger}=\left(\mathbf{D}_{\Lambda}^{H} \mathbf{D}_{\Lambda}\right)^{-1} \mathbf{D}_{\Lambda}^{H}$, we have

$$
\begin{equation*}
\operatorname{ERC}(\Lambda)=\max _{m \in \Lambda^{c}}\left\|\left(\mathbf{D}_{\Lambda}^{H} \mathbf{D}_{\Lambda}\right)^{-1} \mathbf{D}_{\Lambda}^{H} \mathbf{d}_{m}\right\|_{1} \leqslant\left\|\left(\mathbf{D}_{\Lambda}^{H} \mathbf{D}_{\Lambda}\right)^{-1}\right\|_{1 \rightarrow 1} \max _{m \in \Lambda^{c}}\left\|\mathbf{D}_{\Lambda}^{H} \mathbf{d}_{m}\right\|_{1} \tag{7}
\end{equation*}
$$

where we used the matrix norm $\|\cdot\|_{1 \rightarrow 1}$ defined as

$$
\begin{equation*}
\|\mathbf{A}\|_{1 \rightarrow 1}=\max _{\substack{\mathbf{u} \in \mathbb{C}^{N} \\ \mathbf{u} \neq \mathbf{0}}} \frac{\|\mathbf{A} \mathbf{u}\|_{1}}{\|\mathbf{u}\|_{1}}=\max _{\ell \in \llbracket 1, N \rrbracket}\left\|\mathbf{a}_{\ell}\right\|_{1} \tag{8}
\end{equation*}
$$

for a matrix $\mathbf{A}=\left\{\mathbf{a}_{\ell}\right\}_{\ell \in \llbracket 1, N \rrbracket}$. The second term of the upper bound in (7) equals

$$
\max _{m \in \Lambda^{c}}\left\|\mathbf{D}_{\Lambda}^{H} \mathbf{d}_{m}\right\|_{1}=\max _{m \in \Lambda^{c}} \sum_{\ell \in \Lambda}\left|\left\langle\mathbf{d}_{m}, \mathbf{d}_{\ell}\right\rangle\right|
$$

By definition of the coherence $\mu(\mathbf{D})$ of the dictionary $\mathbf{D}$, each term $\left|\left\langle\mathbf{d}_{m}, \mathbf{d}_{\ell}\right\rangle\right|$ is smaller than $\mu(\mathbf{D})$. Therefore,

$$
\begin{equation*}
\max _{m \in \Lambda^{c}}\left\|\mathbf{D}_{\Lambda}^{H} \mathbf{d}_{m}\right\|_{1} \leqslant \max _{m \in \Lambda^{c}} \sum_{\ell \in \Lambda} \mu(\mathbf{D})=|\Lambda| \mu(\mathbf{D}) \tag{9}
\end{equation*}
$$

For the first term of the upper bound in (7), we can use the Neumann theorem to write that

$$
\left\|\left(\mathbf{D}_{\Lambda}^{H} \mathbf{D}_{\Lambda}\right)^{-1}\right\|_{1 \rightarrow 1} \leqslant \sum_{k=0}^{\infty}\left\|\mathbf{I}_{|\Lambda|}-\mathbf{D}_{\Lambda}^{H} \mathbf{D}_{\Lambda}\right\|_{1 \rightarrow 1}^{k}=\frac{1}{1-\left\|\mathbf{I}_{|\Lambda|}-\mathbf{D}_{\Lambda}^{H} \mathbf{D}_{\Lambda}\right\|_{1 \rightarrow 1}}
$$

Given that $\left\|\mathbf{d}_{\ell}\right\|_{2}=1$ for all $\ell \in \llbracket 1, N \rrbracket$, we have

$$
\begin{equation*}
\left\|\mathbf{I}_{|\Lambda|}-\mathbf{D}_{\Lambda}^{H} \mathbf{D}_{\Lambda}\right\|_{1 \rightarrow 1}=\max _{\ell^{\prime} \in \Lambda} \sum_{\substack{\ell \in \Lambda \\ \ell \neq \ell^{\prime}}}\left|\left\langle\mathbf{d}_{\ell}, \mathbf{d}_{\ell^{\prime}}\right\rangle\right| \leqslant \max _{\ell^{\prime} \in \Lambda} \sum_{\substack{\ell \in \Lambda \\ \ell \neq \ell^{\prime}}} \mu(\mathbf{D})=\mu(\mathbf{D})(|\Lambda|-1) . \tag{10}
\end{equation*}
$$

Combining (7), (9), and (10) gives

$$
\operatorname{ERC}(\Lambda) \leqslant \frac{|\Lambda| \mu\left(\mathbf{\Gamma}_{l \cdot m}^{\prime}\right.}{1-(|\Lambda|-1) \mu(\mathbf{D})}
$$

Corollary 3.1. Let $\mathbf{x}=\mathbf{D} \boldsymbol{\alpha} \in \mathbb{C}^{K}$, where $\boldsymbol{\alpha} \in \mathbb{C}^{N}$ and denote $\mathcal{S}=\operatorname{supp} \alpha$. If the condition

$$
|\mathcal{S}|<\frac{1}{2}\left(1+\frac{1}{\mu(\mathbf{D})}\right)
$$

is satisfied, then the orthogonal matching pursuit algorithm recovers $\mathbf{x}$ in less than $|\mathcal{S}|$ iterations.
Proof. If

$$
|\mathcal{S}|<\frac{1}{2}\left(1+\frac{1}{\mu(\mathbf{D})}\right)
$$

then using Proposition 3.1, we have that

$$
\operatorname{ERC}(\mathcal{S}) \leqslant \frac{|\mathcal{S}| \mu(\mathbf{D})}{1-(|\mathcal{S}|-1) \mu(\mathbf{D})}<1
$$

and thus, we can invoke Theorem 2 to complete the proof.


[^0]:    ${ }^{1}$ In practice, it is sometimes computationally more efficient to find a vector $\mathbf{d}_{\ell_{0}}$ that is almost optimal, that is, $\left|\left\langle\mathbf{x}, \mathbf{d}_{\ell_{0}}\right\rangle\right| \geqslant \alpha \max _{\ell \in \llbracket 1, N \rrbracket}\left|\left\langle\mathbf{x}, \mathbf{d}_{\ell}\right\rangle\right|$, where $\alpha \in(0,1]$ is a relaxation factor. In this case, the algorithm is referred to as weak MP.
    ${ }^{2}$ This step becomes $\left|\left\langle\mathbf{r}^{(m)}, \mathbf{d}_{\ell_{m}}\right\rangle\right| \geqslant \alpha \max _{\ell \in \llbracket 1, N \rrbracket}\left|\left\langle\mathbf{r}^{(m)}, \mathbf{d}_{\ell}\right\rangle\right|$ for weak MP with relaxation parameter $\alpha \in(0,1]$.

[^1]:    ${ }^{3}$ The residual satisfies $\left\|\mathbf{r}^{(m)}\right\|_{2}^{2} \leqslant\left(1-\alpha^{2} \mu_{\min }^{2}(\mathbf{D})\right)^{m}\|\mathbf{x}\|_{2}^{2}$ for weak MP with relaxation parameter $\alpha \in(0,1]$.

