Mathematical Methods for Machine Learning and Signal Processing SS 2019 Lecture 11: Matching Pursuit and Orthogonal Matching Pursuit

Céline Aubel (corrections by V. Morgenshtern)

Let $\mathbf{D} \in \mathbb{C}^{K \times N}$ be a dictionary of N > K vectors having unit ℓ_2 -norm, i.e., $\|\mathbf{d}_\ell\|_2 = 1$ for all $\ell \in [\![1, N]\!]$. This dictionary is supposed to be complete, which means that it includes K linearly independent vectors that define a basis of the signal space \mathbb{C}^K .

1 Matching Pursuit (MP)

The Matching Pursuit (MP) algorithm was introduced by S. Mallat and Z. Zhang in 1993. It computes an *s*-term approximation of a signal $\mathbf{x} \in \mathbb{C}^{K}$ in \mathbf{D} , by iteratively selecting a single dictionary vector at a time.

Principle of the MP algorithm. The algorithm starts by projecting **x** orthogonally onto a vector $\mathbf{d}_{\ell_0}, \ell_0 \in [\![1, N]\!]$,

$$\mathbf{x} = \langle \mathbf{x}, \mathbf{d}_{\ell_0}
angle \, \mathbf{d}_{\ell_0} + \mathbf{r}^{(1)},$$

 $\mathbf{r}^{(1)}$ being the residual. Since $\mathbf{r}^{(1)}$ is orthogonal to \mathbf{d}_{ℓ_0} , it follows from Pythagoras theorem that

$$\|\mathbf{x}\|_{2}^{2} = |\langle \mathbf{x}, \mathbf{d}_{\ell_{0}} \rangle|^{2} + \|\mathbf{r}^{(1)}\|_{2}^{2}$$

In order to minimize $\|\mathbf{r}^{(1)}\|_2$, we must choose \mathbf{d}_{ℓ_0} , $\ell_0 \in [\![1, N]\!]$, such that $|\langle \mathbf{x}, \mathbf{d}_{\ell_0} \rangle|$ is maximum¹, that is,

$$\ell_0 \in rgmax_{\ell \in \llbracket 1,N
rbracket} \left| \langle \mathbf{x}, \mathbf{d}_\ell
angle
ight|.$$

The MP algorithm iterates this procedure by subdecomposing the residual. Assume that the *m*th residual $\mathbf{r}^{(m)}$ has already been computed for $m \ge 0$ (initially, we take $\mathbf{r}^{(0)} = \mathbf{x}$). Then, the next iteration chooses \mathbf{d}_{ℓ_m} , $\ell_m \in [\![1, N]\!]$ such that²

$$\ell_m \in rgmax_{\ell \in \llbracket 1,N
rbracket} \left| \left\langle \mathbf{r}^{(m)}, \mathbf{d}_\ell \right\rangle \right|,$$

and projects $\mathbf{r}^{(m)}$ onto \mathbf{d}_{ℓ_m} , thus defining the (m+1)th residual $\mathbf{r}^{(m+1)}$,

$$\mathbf{r}^{(m)} = \left\langle \mathbf{r}^{(m)}, \mathbf{d}_{\ell_m} \right\rangle \mathbf{d}_{\ell_m} + \mathbf{r}^{(m+1)}.$$
 (1)

Again, the orthogonality of $\mathbf{r}^{(m+1)}$ and \mathbf{d}_{ℓ_m} implies that

$$\left\|\mathbf{r}^{(m)}\right\|_{2}^{2} = \left|\left\langle \mathbf{r}^{(m)}, \mathbf{d}_{\ell_{m}}\right\rangle\right|^{2} + \left\|\mathbf{r}^{(m+1)}\right\|_{2}^{2}.$$
(2)

²This step becomes $\left|\left\langle \mathbf{r}^{(m)}, \mathbf{d}_{\ell_m} \right\rangle\right| \ge \alpha \max_{\ell \in [\![1,N]\!]} \left|\left\langle \mathbf{r}^{(m)}, \mathbf{d}_\ell \right\rangle\right|$ for weak MP with relaxation parameter $\alpha \in (0,1]$.

¹In practice, it is sometimes computationally more efficient to find a vector \mathbf{d}_{ℓ_0} that is almost optimal, that is, $|\langle \mathbf{x}, \mathbf{d}_{\ell_0} \rangle| \ge \alpha \max_{\ell \in [\![1,N]\!]} |\langle \mathbf{x}, \mathbf{d}_{\ell} \rangle|$, where $\alpha \in (0, 1]$ is a relaxation factor. In this case, the algorithm is referred to as *weak MP*.

Summing (1) and (2) for m between 0 and M-1 gives

$$\mathbf{x} = \sum_{m=0}^{M-1} \left\langle \mathbf{r}^{(m)}, \mathbf{d}_{\ell_m} \right\rangle \mathbf{d}_{\ell_m} + \mathbf{r}^{(M)}$$
(3)

and

$$\|\mathbf{x}\|_{2}^{2} = \sum_{m=0}^{M-1} \left| \left\langle \mathbf{r}^{(m)}, \mathbf{d}_{\ell_{m}} \right\rangle \right|^{2} + \left\| \mathbf{r}^{(M)} \right\|_{2}^{2}.$$
 (4)

Convergence of the MP algorithm. We can observe from (3) and (4) that the convergence of the MP algorithm depends on the rate of decay of the residual $\|\mathbf{r}^{(m)}\|_2^2$. The following theorem shows that it has an exponential decay.

Theorem 1 (Convergence of the MP algorithm). The residual $\mathbf{r}^{(m)}$ computed by the MP algorithm satisfies³

$$\left\|\mathbf{r}^{(m)}\right\|_{2}^{2} \leqslant \left(1-\mu_{\min}^{2}(\mathbf{D})\right)^{m} \|\mathbf{x}\|_{2}^{2},$$

where

$$\mu_{\min}(\mathbf{D}) = \inf_{\substack{\mathbf{r} \in \mathbb{C}^K \\ \mathbf{r} \neq \mathbf{0}}} \mu(\mathbf{r}, \mathbf{D}) > 0$$

and

$$\mu(\mathbf{r}, \mathbf{D}) = \max_{\ell \in [\![1,N]\!]} \left| \left\langle \frac{\mathbf{r}}{\|\mathbf{r}\|_2}, \mathbf{d}_\ell \right\rangle \right| \leqslant 1$$

is the coherence of the vector ${\bf r}$ relative to the dictionary. As a consequence,

$$\mathbf{x} = \sum_{m=0}^{\infty} \left\langle \mathbf{r}^{(m)}, \mathbf{d}_{\ell_m} \right\rangle \mathbf{d}_{\ell_m} \quad \text{and} \quad \|\mathbf{x}\|_2^2 = \sum_{m=0}^{\infty} \left| \left\langle \mathbf{r}^{(m)}, \mathbf{d}_{\ell_m} \right\rangle \right|^2.$$

Proof. For $k \in [0, m-1]$, Pythagoras theorem stated in (2) implies that

$$\frac{\left\|\mathbf{r}^{(k+1)}\right\|_{2}^{2}}{\left\|\mathbf{r}^{(k)}\right\|_{2}^{2}} = 1 - \left|\left\langle\frac{\mathbf{r}^{(k)}}{\left\|\mathbf{r}^{(k)}\right\|_{2}}, \mathbf{d}_{\ell_{k}}\right\rangle\right|^{2}.$$

By definition of \mathbf{d}_{ℓ_k} , it holds that

$$\frac{\left|\mathbf{r}^{(k+1)}\right\|_{2}^{2}}{\left\|\mathbf{r}^{(k)}\right\|_{2}^{2}} = 1 - \max_{\ell \in [\![1,N]\!]} \left|\left\langle \frac{\mathbf{r}^{(k)}}{\left\|\mathbf{r}^{(k)}\right\|_{2}}, \mathbf{d}_{\ell} \right\rangle\right|^{2} = 1 - \mu^{2} \left(\mathbf{r}^{(k)}, \mathbf{D}\right).$$

We have then

$$\frac{\left\|\mathbf{r}^{(k+1)}\right\|_{2}^{2}}{\left\|\mathbf{r}^{(k)}\right\|_{2}^{2}} \leqslant \sup_{\substack{\mathbf{r}\in\mathbb{C}^{K}\\\mathbf{r}\neq\mathbf{0}}} \left(1-\mu^{2}(\mathbf{r},\mathbf{D})\right) = 1 - \inf_{\substack{\mathbf{r}\in\mathbb{C}^{K}\\\mathbf{r}\neq\mathbf{0}}} \mu^{2}(\mathbf{r},\mathbf{D}) = 1 - \mu_{\min}^{2}(\mathbf{D}).$$

Multiplying this last inequality for k between 0 and m-1 and using the fact that $\mathbf{r}^{(0)} = \mathbf{x}$ yields

$$\left\|\mathbf{r}^{(m)}\right\|_{2}^{2} \leqslant \left(1 - \alpha^{2} \mu_{\min}^{2}(\mathbf{D})\right)^{m} \|\mathbf{x}\|_{2}^{2}.$$

³The residual satisfies $\left\|\mathbf{r}^{(m)}\right\|_{2}^{2} \leq \left(1 - \alpha^{2} \mu_{\min}^{2}(\mathbf{D})\right)^{m} \|\mathbf{x}\|_{2}^{2}$ for weak MP with relaxation parameter $\alpha \in (0, 1]$.

We now have to verify that $\mu_{\min}(\mathbf{D}) > 0$. By way of contradiction, assume that $\mu_{\min}(\mathbf{D}) = 0$. Then, one can find a sequence $\{\mathbf{x}_n\}_{n \in \mathbb{N}}$ of \mathbb{C}^K with $\|\mathbf{x}_n\|_2 = 1$ such that

$$\lim_{n \to \infty} \max_{\ell \in [[1,N]]} |\langle \mathbf{x}_n, \mathbf{d}_\ell \rangle| = 0.$$

Since the unit sphere of \mathbb{C}^N is compact, there exists a subsequence $\{\mathbf{z}_{n_k}\}_{k\in\mathbb{N}}$ of $\{\mathbf{z}_n\}_{n\in\mathbb{N}}$ that converges to a unit vector $\mathbf{z}\in\mathbb{C}^N$, $\|\mathbf{z}\|_2 = 1$. It follows that

$$\max_{\ell \in \llbracket 1,N \rrbracket} |\langle \mathbf{z}, \mathbf{d}_{\ell} \rangle| = \lim_{k \to \infty} \max_{\ell \in \llbracket 1,N \rrbracket} |\langle \mathbf{z}_{n_k}, \mathbf{d}_{\ell} \rangle| = 0.$$

Hence, $\langle \mathbf{z}, \mathbf{d}_{\ell} \rangle = 0$ for all $\ell \in [\![1, N]\!]$. Since $\{\mathbf{d}_{\ell}\}_{\ell \in [\![1, N]\!]}$ contains a basis for \mathbb{C}^{K} , necessarily, $\mathbf{z} = \mathbf{0}$, which contradicts the fact that $\|\mathbf{z}\|_{2} = 1$. Therefore, $\mu_{\min}(\mathbf{D}) > 0$. As a result, $1 - \alpha^{2} \mu_{\min}(\mathbf{D}) < 1$, implying that $\lim_{m \to \infty} \|\mathbf{r}^{(m)}\|_{2} = 0$. We can conclude by noting that (3) and (4) becomes

$$\mathbf{x} = \sum_{m=0}^{\infty} \left\langle \mathbf{r}^{(m)}, \mathbf{d}_{\ell_m} \right\rangle \mathbf{d}_{m_{\ell}} \quad \text{and} \quad \|\mathbf{x}\|_2^2 = \sum_{m=0}^{\infty} \left| \left\langle \mathbf{r}^{(m)}, \mathbf{d}_{\ell_m} \right\rangle \right|^2$$

as $M \to \infty$.

2 Orthogonal Matching Pursuit (OMP)

At each iteration m, the vector \mathbf{d}_{ℓ_m} selected by the Matching Pursuit algorithm is a priori not orthogonal to the previously selected vectors \mathbf{d}_{ℓ_k} , $k \in [\![0, m-1]\!]$. The Orthogonal Matching Pursuit (OMP) algorithm improves the MP algorithm by orthogonalizing the directions of projections.

The Gram-Schmidt algorithm orthogonalizes \mathbf{d}_{ℓ_m} with respect to $\{\mathbf{d}_{\ell_k}\}_{k \in [0,m-1]}$,

$$\mathbf{u}_{0} = \mathbf{d}_{\ell_{0}}$$
$$\mathbf{u}_{m} = \mathbf{d}_{\ell_{m}} - \sum_{k=0}^{m-1} \frac{\langle \mathbf{d}_{\ell_{m}}, \mathbf{u}_{k} \rangle}{\|\mathbf{u}_{k}\|_{2}^{2}} \mathbf{u}_{k}.$$
(5)

The residual $\mathbf{r}^{(m)}$ is projected onto \mathbf{u}_m instead of \mathbf{d}_{ℓ_m} ,

$$\mathbf{r}^{(m)} = \frac{\langle \mathbf{r}^{(m)}, \mathbf{u}_m \rangle}{\|\mathbf{u}_m\|_2^2} \mathbf{u}_m + \mathbf{r}^{(m+1)} = \frac{\mathbf{u}_m^H \mathbf{r}^{(m)}}{\|\mathbf{u}_m\|_2^2} \mathbf{u}_m + \mathbf{r}^{(m+1)} = \frac{\mathbf{u}_m \mathbf{u}_m^H}{\|\mathbf{u}_m\|_2^2} \mathbf{r}^{(m)} + \mathbf{r}^{(m+1)},$$

which yields the relation

$$\left(\mathbf{I}_{K} - \frac{\mathbf{u}_{m}\mathbf{u}_{m}^{H}}{\|\mathbf{u}_{m}\|_{2}^{2}}\right)\mathbf{r}^{(m)} = \mathbf{r}^{(m+1)}.$$

Since $\mathbf{r}^{(0)} = \mathbf{x}$ and the vectors \mathbf{u}_m are orthogonal, it results that

$$\underbrace{\left(\mathbf{I}_{K}-\frac{\mathbf{u}_{0}\mathbf{u}_{0}^{H}}{\|\mathbf{u}_{0}\|_{2}^{2}}\right)\ldots\left(\mathbf{I}_{K}-\frac{\mathbf{u}_{M-1}\mathbf{u}_{M-1}^{H}}{\|\mathbf{u}_{M-1}\|_{2}^{2}}\right)\mathbf{x}}_{=(\mathbf{I}_{K}-\mathbf{P}_{\mathcal{V}_{M}})\mathbf{x}}=\mathbf{r}^{(M)},$$

where

$$\mathbf{P}_{\mathcal{V}_M} = \sum_{m=0}^{M-1} \frac{\mathbf{u}_m \left(\mathbf{u}_m\right)^H}{\|\mathbf{u}_m\|_2^2}$$

is the orthogonal projector onto the space $\mathcal{V}_M = \operatorname{span}\{\mathbf{u}_m\}_{m \in [0, M-1]}$. It follows that

$$\mathbf{x} = \mathbf{P}_{\mathcal{V}_M} \mathbf{x} + \mathbf{r}^{(M)}.$$

The Gram-Schmidt algorithm ensures that $\{\mathbf{d}_m\}_{m \in [0, M-1]}$ is also a basis for \mathcal{V}_M . The residual $\mathbf{r}^{(M)}$ is the component of \mathbf{x} that is orthogonal to \mathcal{V}_M . For m = M, (5) implies that

$$\left\langle \mathbf{r}^{(M)},\mathbf{u}_{M}\right\rangle =\left\langle \mathbf{r}^{(M)},\mathbf{d}_{\scriptscriptstyle LM}\right\rangle.$$

Since \mathcal{V}_M has dimension M, there exists $P \leq K$ such that $\mathbf{x} \in \mathcal{V}_P$. We have then $\mathbf{r}^{(P)} = 0$ and

$$\mathbf{x} = \sum_{m=0}^{P-1} \frac{\left\langle \mathbf{r}^{(m)}, \mathbf{d}_{\scriptscriptstyle L^m} \right\rangle}{\|\mathbf{u}_m\|_2^2} \mathbf{u}_m.$$

The algorithm stops after $P \leq K$ iterations. The energy conservation resulting from the decomposition is

$$\|\mathbf{x}\|_{2}^{2} = \sum_{m=0}^{M-1} \frac{\left|\left\langle \mathbf{r}^{(m)}, \mathbf{d}_{_{\scriptscriptstyle L^{m}}}\right\rangle\right|^{2}}{\|\mathbf{u}_{m}\|_{2}^{2}}.$$

To expand \mathbf{x} over the original dictionary vectors \mathbf{d}_m , we can perform a change of basis. The OMP algorithm is summarized as Algorithm 1.

Algorithm 1: Orthogonal Matching Pursuit (OMP)
Input : D , a dictionary in $\mathbb{C}^{K \times N}$, x , a signal in \mathbb{C}^{K} , s, the sparsity level of the ideal signal.
Output : $\hat{\boldsymbol{\alpha}}$, a sparse representation of the signal in \mathbb{C}^N , \mathcal{I} , the support of the estimated signal, i.e., the set containing the position of the nonzero elements of $\hat{\boldsymbol{\alpha}}$.
 Initialize the sparse representation α⁽⁰⁾ = 0, the index set I⁽⁰⁾ = Ø, the matrix of chosen atoms D⁽⁰⁾ = [], and the iteration counter t = 1. while t < s do
3: Calculate the residual: $\mathbf{r}^{(t)} = \mathbf{x} - \mathbf{D}^{(t-1)} \boldsymbol{\alpha}^{(t-1)}.$
4: Find the index of the column of D that is most correlated with $\mathbf{r}^{(t)}$: $i^{(t)} = \underset{j=1,,N}{\operatorname{argmax}} \langle \mathbf{r}^{(t)}, \mathbf{D}_j \rangle .$ If the maximum occurs for multiple indices, choose one arbitrarily.
5: Augment the index set $\mathcal{I}^{(t)} = \mathcal{I}^{(t-1)} \cup \{i^{(t)}\}$ and the matrix of chosen atoms $\mathbf{D}^{(t)} = \operatorname{concat}(\mathbf{D}^{(t-1)}, \mathbf{D}_{i^{(t)}}).$
6: Update the signal estimate by solving the least square problem: $\boldsymbol{\alpha}^{(t)} = \operatorname*{argmin}_{\boldsymbol{\alpha} \in \mathbb{C}^N} \ \mathbf{x} - \mathbf{D}^{(t)} \boldsymbol{\alpha}\ _2$, i.e., $\boldsymbol{\alpha}^{(t)} = \mathbf{D}^{(t)\dagger} \mathbf{x}$.
7: $t = t + 1$.
8: end while $\hat{\sigma} = \hat{\sigma}^{(t)}$ and $\mathcal{T} = \mathcal{T}^{(t)}$
9: $\alpha = \alpha^{(1)}$ and $\mathcal{L} = \mathcal{L}^{(2)}$. 10: return $\hat{\alpha}, \mathcal{I}$

3 Exact Recovery Conditions

Theorem 2. For $\Lambda \subseteq [\![1, N]\!]$, let $\{\tilde{\mathbf{d}}_\ell\}_{\ell \in \Lambda}$ be the dual basis of $\{\mathbf{d}_\ell\}_{\ell \in \Lambda}$ in $\mathcal{V}_{\lambda} = \operatorname{span}\{\mathbf{d}_\ell\}_{\Lambda}$ and define

$$\operatorname{ERC}(\Lambda) = \max_{m \in \Lambda^c} \sum_{\ell \in \Lambda} \left| \left\langle \tilde{\mathbf{d}}_{\ell}, \mathbf{d}_m \right\rangle \right|$$

where $\Lambda^c = \llbracket 1, N \rrbracket \setminus \Lambda$ denotes the complement of Λ . Let $\mathbf{x} = \mathbf{D}\boldsymbol{\alpha} \in \mathbb{C}^K$, where $\boldsymbol{\alpha} \in \mathbb{C}^N$, and denote $\mathcal{S} = \operatorname{supp} \boldsymbol{\alpha} = \{\ell \in \llbracket 1, N \rrbracket : |\alpha_\ell| \neq 0\}$. If the exact recovery condition (ERC),

 $\operatorname{ERC}(\mathcal{S}) < 1,$

is satisfied, then the matching pursuit algorithm selects only vectors in $\{\mathbf{d}_{\ell}\}_{\ell \in \mathcal{S}}$ and the orthogonal matching pursuit algorithm recovers \mathbf{x} with at most $|\mathcal{S}|$ iterations.

Proof. At each iteration m, the MP and OMP algorithms selects a vector \mathbf{d}_{ℓ} with $\ell \in \Lambda$ if and only if the correlation of the residual $\mathbf{r}^{(m)}$ with vectors indexed by the complement of Λ is smaller than the correlation with vectors indexed by Λ : $C(\mathbf{r}^{(m)}, \Lambda^c) < 1$, where we define the correlation of a vector \mathbf{h} with vectors in Λ^c relative to Λ ,

$$C(\mathbf{h}, \Lambda) = \frac{\max_{m \in \Lambda^c} |\langle \mathbf{h}, \mathbf{d}_m \rangle|}{\max_{\ell \in \Lambda} |\langle \mathbf{h}, \mathbf{d}_\ell \rangle|}$$

Let us first prove that for all $\Lambda \subseteq [\![1, N]\!]$,

$$\sup_{\mathbf{h}\in\mathcal{V}_{\Lambda}}C(\mathbf{h},\Lambda)\leqslant \mathrm{ERC}(\Lambda).$$
(6)

Let $\mathbf{D}_{\Lambda}^{\dagger} = (\mathbf{D}_{\Lambda}^{H}\mathbf{D}_{\Lambda})^{-1}\mathbf{D}_{\Lambda}^{H}$ be the Moore-Penrose pseudo-inverse of \mathbf{D}_{Λ} . We know that $\mathbf{D}_{\Lambda}\mathbf{D}_{\Lambda}^{\dagger} = (\mathbf{D}_{\Lambda}^{\dagger})^{H}\mathbf{D}_{\Lambda}^{H}$ is the orthogonal projector onto \mathcal{V}_{Λ} . Thus, if $\mathbf{h} \in \mathcal{V}_{\Lambda}$ and $m \in \Lambda^{c}$, it holds that

$$\begin{split} |\langle \mathbf{h}, \mathbf{d}_m \rangle| &= \left| \left\langle (\mathbf{D}_{\Lambda}^{\dagger})^H \mathbf{D}_{\Lambda}^H \mathbf{h}, \mathbf{d}_m \right\rangle \right| = \left| \left\langle \mathbf{D}_{\Lambda}^H \mathbf{h}, \mathbf{D}_{\Lambda}^{\dagger} \mathbf{d}_m \right\rangle \right| \leqslant \left\| \mathbf{D}_{\Lambda}^H \mathbf{h} \right\|_{\infty} \left\| \mathbf{D}_{\Lambda}^{\dagger} \mathbf{d}_m \right\|_1 \\ &\leqslant \left\| \mathbf{D}_{\Lambda}^H \mathbf{h} \right\|_{\infty} \max_{m' \in \Lambda^c} \left\| \mathbf{D}_{\Lambda}^{\dagger} \mathbf{d}_{m'} \right\|_1. \end{split}$$

Since $\mathbf{\tilde{D}}$ is the dual basis of \mathbf{D} in the space $\mathcal{V} = \operatorname{span}\{\mathbf{d}_{\ell}\}_{\ell \in \Lambda}$, we know that $\mathbf{\tilde{D}}_{\Lambda}^{H} = \mathbf{D}_{\Lambda}^{\dagger}$. Therefore, it holds that

$$\operatorname{ERC}(\Lambda) = \max_{m' \in \Lambda^c} \sum_{\ell \in \Lambda} \left| \left\langle \tilde{\mathbf{d}}_{\ell}, \mathbf{d}_{m'} \right\rangle \right| = \max_{m' \in \Lambda^c} \left\| \widetilde{\mathbf{D}}_{\Lambda}^H \mathbf{d}_{m'} \right\|_1 = \max_{m' \in \Lambda^c} \left\| \mathbf{D}_{\Lambda}^{\dagger} \mathbf{d}_{m'} \right\|_1.$$

Moreover, we have

$$\left\|\mathbf{D}_{\Lambda}^{H}\mathbf{h}\right\|_{\infty} = \max_{\ell \in \Lambda} \left| \langle \mathbf{h}, \mathbf{d}_{\ell} \rangle \right|.$$

As a consequence, it holds for all $\mathbf{h}\in\mathcal{V}_{\Lambda}$ that

$$\max_{m \in \Lambda^c} |\langle \mathbf{h}, \mathbf{d}_m \rangle| \leq \text{ERC}(\Lambda) \max_{\ell \in \Lambda} |\langle \mathbf{h}, \mathbf{d}_\ell \rangle|,$$

which proves (6).

We now prove the reverse inequality. Let $m_0 \in \Lambda^c$ be such that

$$m_0 \in \operatorname*{arg\,max}_{m \in \Lambda^c} \sum_{\ell \in \Lambda} \left| \left\langle \tilde{\mathbf{d}}_{\ell}, \mathbf{d}_m \right\rangle \right|.$$

Introducing

$$\mathbf{h} = \sum_{\ell \in \Lambda} \mathrm{sign} \left(\left\langle ilde{\mathbf{d}}_\ell, \mathbf{d}_{m_0}
ight
angle
ight) ilde{\mathbf{d}}_\ell$$

leads to

$$\operatorname{ERC}(\Lambda) = \sum_{\ell \in \Lambda} \left| \left\langle \tilde{\mathbf{d}}_{\ell}, \mathbf{d}_{m_0} \right\rangle \right| = \left| \left\langle \mathbf{h}, \mathbf{d}_{m_0} \right\rangle \right| \leqslant \max_{m \in \Lambda^c} \left| \left\langle \mathbf{h}, \mathbf{d}_m \right\rangle \right| \leqslant C(\mathbf{h}, \Lambda^c) \max_{\ell \in \Lambda} \left| \left\langle \mathbf{h}, \mathbf{d}_\ell \right\rangle \right|.$$

Since $|\langle \mathbf{h}, \mathbf{d}_{\ell} \rangle| = \left| \operatorname{sign} \left(\left\langle \tilde{\mathbf{d}}_{\ell}, \mathbf{d}_{m_0} \right\rangle \right) \right| = 1$, it results that $\operatorname{ERC}(\Lambda) \leq C(\mathbf{h}, \Lambda^c)$ and therefore,

$$\operatorname{ERC}(\Lambda) \leqslant \sup_{\mathbf{h} \in \mathcal{V}_{\Lambda}} C(\mathbf{h}, \Lambda^c)$$

which, combined with (6), shows that

$$\operatorname{ERC}(\Lambda) = \sup_{\mathbf{h}\in\mathcal{V}_{\Lambda}} C(\mathbf{h},\Lambda^{c}).$$

Now, to prove the claim of the theorem, suppose that $\mathbf{x} = \mathbf{r}^{(0)} \in \mathcal{V}_{\mathcal{S}}$ and $\text{ERC}(\mathcal{S}) < 1$. We prove by induction that the MP algorithm selects only vectors in $\{\mathbf{d}_{\ell}\}_{\ell \in \mathcal{S}}$. Suppose that the first m < M vectors selected by the MP algorithm are in $\{\mathbf{d}_{\ell}\}_{\ell \in \mathcal{S}}$, and thus, that $\mathbf{r}^{(m)} \in \mathcal{V}_{\mathcal{S}}$. If $\mathbf{r}^{(m)} \neq \mathbf{0}$, then the condition $\text{ERC}(\mathcal{S}) < 1$ implies that $C(\mathbf{r}^{(m)}, \mathcal{S}^c) < 1$ and thus the next vector is selected in \mathcal{S} . Since $\dim(\mathcal{V}_{\mathcal{S}}) \leq |\mathcal{S}|$, the OMP algorithm converges in less that $|\mathcal{S}|$ iterations. In the $|\mathcal{S}|$ th step, we are left with $\mathbf{r}^{(|\mathcal{S}|)} = (\mathbf{I} - \mathbf{P}_{\mathcal{V}_{|\mathcal{S}|-1}})\mathbf{x} = \mathbf{0}$ and hence, the algorithm stops.

Proposition 3.1. For any $\Lambda \subseteq [\![1, N]\!]$, we have that

$$\operatorname{ERC}(\Lambda) \leqslant \frac{|\Lambda|\mu(\mathbf{D})}{1 - (|\Lambda| - 1)\mu(\mathbf{D})}$$

Proof. We have shown in the proof of Theorem 2 that

$$\operatorname{ERC}(\Lambda) = \max_{m \in \Lambda^c} \left\| \mathbf{D}_{\Lambda}^{\dagger} \mathbf{d}_m \right\|_1.$$

Since $\mathbf{D}^{\dagger}_{\Lambda} = (\mathbf{D}^{H}_{\Lambda}\mathbf{D}_{\Lambda})^{-1}\mathbf{D}^{H}_{\Lambda}$, we have

$$\operatorname{ERC}(\Lambda) = \max_{m \in \Lambda^{c}} \left\| (\mathbf{D}_{\Lambda}^{H} \mathbf{D}_{\Lambda})^{-1} \mathbf{D}_{\Lambda}^{H} \mathbf{d}_{m} \right\|_{1} \leq \left\| (\mathbf{D}_{\Lambda}^{H} \mathbf{D}_{\Lambda})^{-1} \right\|_{1 \to 1} \max_{m \in \Lambda^{c}} \left\| \mathbf{D}_{\Lambda}^{H} \mathbf{d}_{m} \right\|_{1},$$
(7)

where we used the matrix norm $\|\cdot\|_{1\to 1}$ defined as

$$\|\mathbf{A}\|_{1\to 1} = \max_{\substack{\mathbf{u}\in\mathbb{C}^N\\\mathbf{u}\neq\mathbf{0}}} \frac{\|\mathbf{A}\mathbf{u}\|_1}{\|\mathbf{u}\|_1} = \max_{\ell\in[\![1,N]\!]} \|\mathbf{a}_\ell\|_1 \tag{8}$$

for a matrix $\mathbf{A} = {\mathbf{a}_{\ell}}_{\ell \in [\![1,N]\!]}$. The second term of the upper bound in (7) equals

$$\max_{m \in \Lambda^c} \left\| \mathbf{D}_{\Lambda}^H \mathbf{d}_m \right\|_1 = \max_{m \in \Lambda^c} \sum_{\ell \in \Lambda} \left| \langle \mathbf{d}_m, \mathbf{d}_\ell \rangle \right|.$$

By definition of the coherence $\mu(\mathbf{D})$ of the dictionary \mathbf{D} , each term $|\langle \mathbf{d}_m, \mathbf{d}_\ell \rangle|$ is smaller than $\mu(\mathbf{D})$. Therefore,

$$\max_{m \in \Lambda^c} \left\| \mathbf{D}_{\Lambda}^H \mathbf{d}_m \right\|_1 \leqslant \max_{m \in \Lambda^c} \sum_{\ell \in \Lambda} \mu(\mathbf{D}) = |\Lambda| \mu(\mathbf{D}).$$
(9)

For the first term of the upper bound in (7), we can use the Neumann theorem to write that

$$\left\| (\mathbf{D}_{\Lambda}^{H}\mathbf{D}_{\Lambda})^{-1} \right\|_{1 \to 1} \leqslant \sum_{k=0}^{\infty} \left\| \mathbf{I}_{|\Lambda|} - \mathbf{D}_{\Lambda}^{H}\mathbf{D}_{\Lambda} \right\|_{1 \to 1}^{k} = \frac{1}{1 - \left\| \mathbf{I}_{|\Lambda|} - \mathbf{D}_{\Lambda}^{H}\mathbf{D}_{\Lambda} \right\|_{1 \to 1}}$$

Given that $\|\mathbf{d}_{\ell}\|_2 = 1$ for all $\ell \in [\![1, N]\!]$, we have

$$\left\|\mathbf{I}_{|\Lambda|} - \mathbf{D}_{\Lambda}^{H} \mathbf{D}_{\Lambda}\right\|_{1 \to 1} = \max_{\ell' \in \Lambda} \sum_{\substack{\ell \in \Lambda \\ \ell \neq \ell'}} \left|\langle \mathbf{d}_{\ell}, \mathbf{d}_{\ell'} \rangle\right| \leqslant \max_{\substack{\ell' \in \Lambda \\ \ell \neq \ell'}} \sum_{\substack{\ell \in \Lambda \\ \ell \neq \ell'}} \mu(\mathbf{D}) = \mu(\mathbf{D})(|\Lambda| - 1).$$
(10)

Combining (7), (9), and (10) gives

$$ext{ERC}(\Lambda) \leqslant rac{|\Lambda| \mu(\mathbf{\Gamma}_{\iota, m}^{\wedge})}{1 - (|\Lambda| - 1) \mu(\mathbf{D})}.$$

Corollary 3.1. Let $\mathbf{x} = \mathbf{D}\boldsymbol{\alpha} \in \mathbb{C}^{K}$, where $\boldsymbol{\alpha} \in \mathbb{C}^{N}$ and denote $\mathcal{S} = \operatorname{supp} \boldsymbol{\alpha}$. If the condition

$$|\mathcal{S}| < \frac{1}{2} \left(1 + \frac{1}{\mu(\mathbf{D})} \right)$$

is satisfied, then the orthogonal matching pursuit algorithm recovers \mathbf{x} in less than $|\mathcal{S}|$ iterations. *Proof.* If

$$|\mathcal{S}| < \frac{1}{2} \left(1 + \frac{1}{\mu(\mathbf{D})} \right),$$

then using Proposition 3.1, we have that

$$\operatorname{ERC}(\mathcal{S}) \leqslant \frac{|\mathcal{S}|\mu(\mathbf{D})}{1 - (|\mathcal{S}| - 1)\mu(\mathbf{D})} < 1,$$

and thus, we can invoke Theorem 2 to complete the proof.