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Agenda:

1. Signal separation problem

2. Spark

3. P0 recovery algorithm

4. Coherence

5. Basis pursuit recovery algorithm

6. Uncertainty principles

7. Square-root bottleneck

1 Signal separation problem

We begin by studying the signal separation problem. Consider the following example in which we
are looking at images of neurons and would like to automatically separate the point-like structures
from the curve-like structures.

Figure 1: Separation of spines and dendrites, taken from work by Gitta Kutyniok.
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There are many problems like this. For example here we are separating the image into cartoon-like
part and texture.

Figure 2: Separation of texture.

Here is one more example [1]:

Figure 3: Separation of four structures.

How can we solve such problems?

Consider the example in Figure 1. Let’s vectorize the image of point-like structures (bottom left)
and collect the pixels into vector z1 ∈ Rm. That point-like signals can be sparsely represented in
wavelet domain. This means that we can write

y1 = Aw (1)

where A ∈ Rm×m is a square discrete wavelet transform matrix and w ∈ Rm is the vector of wavelet
coefficients. Importantly, w will be very sparse, meaning that most of its component will be zero
or close to zero. We will say that w is s1-sparse, and write ‖w‖0 ≤ s1.
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Definition 1. For any vector x, the quasi-norm ‖x‖0 denotes the number of nonzero entries in x.

Let’s vectorize the image of curve-like structures (bottom right) and collect the pixels into vector
z2 ∈ Rm. Curve-like structures also admit a sparse representation:

y2 = Bs (2)

where B ∈ Rm×l, l > m, is a frame of Shearlets and s contains shearlet coefficients of the signal
s. We will not study the details of Shearlet construction in this class. It is sufficient to say that
Shearlets have been designed to reveal sparsity of curve-like images. Therefore, we assume that
‖s‖0 ≤ s2.

The signal separation problem can now be written as:

y = Ax1︸︷︷︸
y1

+ Be︸︷︷︸
y2

= [A B]︸ ︷︷ ︸
D

[
w
s

]
︸︷︷︸
x

= Dx.

If we can recover x from y, the we can easily obtain y1 and y2 via (1) and (2). We know that the
sparsity of x satisfies s = ‖x‖0 = s1 + s2.

Without additional assumption on x we cannot recover x from y = Dx, because we have more
unknowns than observations. Concretely, D ∈ Rm×n with n = m+ l > m is a fat matrix.

Perhaps sparsity of x could help. For example, if s ≤ m, and if we knew where the nonzero elements
of x are located (knew the support of x), we could just invert the corresponding matrix and recover
x. Can we also recover x without knowing the support of x?

2 Spark

First let’s discuss the conditions that are certainly necessary to be able to recover x from y. When
does the dictionary D admits successful recovery of all s-sparse vectors?

First observe that the set of all s-sparse vector is a union of subspaces in Rn:
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Figure 4: The set of s-sparse vectors

Each subspace corresponds to a distinct sparsity pattern.

The recovery is only possible if all s-sparse vectors are distinguishable:

Figure 5: Measurement matrix is injective for s-sparse vectors

Mathematically, for all x1,x2 that are s-sparse with x1 6= x2

‖D (x1 − x2)‖22 > 0.

Hence, all collections of 2s columns of D have to be linearly independent. Clearly, this is possible
only if m ≥ 2s.

Definition 2. The spark of a matrix A denoted by spark(A) is defined as the cardinality of the
smallest set of linearly dependent columns.

4



3 P0 recovery algorithm

For a given matrix D of dimension m × n, uniqueness of recovery of s-sparse vectors x from the
observation y = Dx is guaranteed for

s <
spark(D)

2
.

This can be done via combinatorial search:

(P0) find arg min‖x̂‖0 subject to y = Dx̂.

Suppose that ‖x‖0 ≤ s and s < spark(D)
2 . Let x̃ 6= x with ‖x̃‖0 ≤ s and y = Dx̃, then

0 = y − y = Dx−Dx̃ = D (x− x̃) .

The sparsity of x− x̃ is bounded as ‖x− x̃‖0 ≤ 2s.

Since 2s < spark(D), we know that

‖D (x− x̃)‖ > 0, x− x̃ 6= 0

as every set of 2s columns of D is linearly independent. Therefore (P0) recovers x uniquely.

Determining the spark of a dictionary is a combinatorial problem and leads to huge computational
complexity even for small problem size. Specifically, every set of a columns out of the

(
n
a

)
possible

sets has to be checked for linear independence and the parameter a has to be increased starting
from two.

4 Coherence

In the following, we assume that every column of a dictionary D is normalized to unit 2-norm.

We next derive a lower bound on the spark in terms of the coherence of the dictionary, µ(D),
defined according to

Definition 3. For D = [d1 . . .dn] ∈ Cm×n with ‖di‖2 = 1 for all i, the coherence is defined as
µ(D) = maxi 6=j | 〈di,dj〉 |.

Theorem 1. [2], [3] (P0) applied to y = Dx recovers x if

‖x‖0 = s <
1

2

(
1 +

1

µ(D)

)
.

Proof. We will show that spark(D) ≥ 1 + 1/µ(D). Consider h ∈ Cn with ‖h‖0 = spark(D) and
Dh = 0, i.e. h ∈ N (D). Then, we have

dlhl = −
∑
r 6=l

drhr, for all l ∈ {1, . . . , n}.
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Left-multiplying both sides by dH
l and using ‖dl‖2 = 1 yields

hl = −
∑
r 6=l

dH
l drhr,

which implies

|hl| =

∣∣∣∣∣∣
∑
r 6=l

dH
l drhr

∣∣∣∣∣∣ ≤
∑
r 6=l

∣∣∣dH
l dr

∣∣∣ |hr| ≤ µ(D)
∑
r 6=l
|hr| for l ∈ {1, . . . , n}.

Adding µ(D)|hl| on both sides results in

(1 + µ(D)) |hl| ≤ µ(D)‖h‖1 for l ∈ {1, . . . , n}. (3)

Summing over all l for which hl 6= 0 finally leads to

(1 + µ(D)) ‖h‖1 ≤ µ(D)‖h‖1 spark(D)

⇒ spark(D) ≥ 1 +
1

µ(D)
.

Notice that determining µ(D) has the complexity of doing the first step in the computation of
spark(D), i.e., checking whether any two columns are linearly independent. Therefore coherence
can we quickly calculated for every dictionary.

5 Basis pursuit recovery algorithm

(P0) recovery algorithm is a combinatorial problem and leads to huge computational complexity
even for small problem size. Specifically, for every set of s locations out of the

(
n
s

)
possible sets we

need to solve a system of linear equation. Is there a more efficient algorithm to recover the signal?

In this section, we consider the recovery algorithm

(P1) find arg min‖x̂‖1 subject to y = Dx̂

(P1) is often referred to as basis pursuit (BP). This is a linear program and is therefore efficiently
solvable even for huge problem sizes.

For early results on l1-reconstruction see [4] and [5].

Why does `1-reconstruction work?

arg min‖x̂‖1 subject to y = Dx̂

m
arg min‖x̂‖1 subject to x̂ ∈ ({x}+N (D))
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z1

z2

x{x}+N (D)

`2-ball

`1-ball

Let us draw the scaled `1-ball, i.e., {(z1, z2) : |z1| + |z2| = const.}. Consider the case z1, z2 > 0.
Then, z1 + z2 = const. and, therefore, z2 = const. − z1. By symmetry, the `1-ball must look as
depicted below.

z1

z2

`1-ball

Clearly, (P1) cannot always recover the correct solutions, e.g., consider the scenario in the figure
below.
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z1

z2

x

{x}+N (D)

Can we characterize analytically under which conditions (P1) finds the correct solution?

5.1 Null space property

The following property of D is central to the success of (P1).

Definition 4. A matrix D is said to satisfy the null space property relative to a set S if

P1(S,D) , max
h∈N (D), h6=0

∑
k∈S |hk|∑
k |hk|

<
1

2
.

It is said to satisfy the null space property of order s if it satisfies the null space property relative
to any set S with |S| ≤ s.

5.2 Recovery guarantee

Theorem 2. Fix x = [x1, . . . , xn]T with support set S and let y = Dx. If P1(S,D) < 1/2, then x
is the unique solution to

(P1) find arg min‖x̂‖1 subject to y = Dx̂.

Proof. We need to prove that for all h = [h1, . . . , hn]T ∈ N (D)∑
k

|xk + hk| >
∑
k

|xk| .

Application of the reverse triangle inequality

|a+ b| ≥ |a| − |b|
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to the LHS of the above equation yields∑
k

|xk + hk| =
∑
k/∈S

|xk + hk|+
∑
k∈S
|xk + hk|

=
∑
k/∈S

|hk|+
∑
k∈S
|xk + hk|

≥
∑
k/∈S

|hk|+
∑
k∈S
|xk| −

∑
k∈S
|hk| .

Therefore, the theorem would follow if we can show that∑
k/∈S

|hk| >
∑
k∈S
|hk| .

Adding
∑

k∈S |hk| to both sides of the above equation results in the equivalent requirement:∑
k

|hk| > 2
∑
k∈S
|hk|

which is satisfied iff ∑
k∈S |hk|∑
k |hk|︸ ︷︷ ︸

P1(S,D)

<
1

2
.

The last requirement is satisfied for all h ∈ N (D) since P1(S,D) < 1/2 by assumption.

The theorem above guarantees that the basis pursuit algorithm will successfully recover every signal,
if D satisfies the null space property relative to the support of the signal. Therefore, if D satisfies
the null space property of order s, the algorithm will recover successfully every signal with sparsity
level no larger than s. How large can s possibly be? Next we will answer this question in terms of
coherence µ(D) of the dictionary D.

5.3 Low coherence implies null space property

Consider h ∈ N (D) and let S denote the support of x. Due to the proof of Theorem 1, (3), we
know that

(1 + µ(D)) |hl| ≤ µ(D)‖h‖1, for all l = 1, . . . , n.

Summing over all l ∈ S, we get

(1 + µ(D))
∑
l∈S
|hl| ≤ µ(D)‖h‖1|S|

(1 + µ(D))

∑
l∈S |hl|∑
l |hl|

≤ µ(D)|S|

(1 + µ(D))P1(S,D) ≤ µ(D)|S|

P1(S,D) ≤ 1

1 + 1/µ(D)
|S|.
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Therefore, if 1
1+1/µ(D) |S| < 1/2, then P1(S,D) < 1/2, i.e., the desired upper bound on the cardi-

nality of the support set is given by

|S| < 1

2

(
1 +

1

µ(D)

)
just as in the case of recovery via (P0).

We therefore proved the following theorem.

Theorem 3. [2], [3] (P1) applied to y = Dx recovers x if

‖x‖0 <
1

2

(
1 +

1

µ(D)

)
.

6 Other signal recovery problems

Our motivation so far has been the signal separation recovery problem. We now list other related
problems that can be addressed in a similar way.

6.1 Inpainting

Consider the following setting:

• the signal x is sparse with unknown support set

• we observe y = Ax, A is, for example, a discrete wavelet transform matrix

• only a subset of the entries of y = Ax is available

• inpainting amounts to filling in the missing entries

• we account for the missing entries by taking the observation to be

z = Ax︸︷︷︸
y

+e = Ax + Ie

and choose e such that the entries of z = y + e corresponding to the missing entries in y are
set to some arbitrary value, e.g., zero.

If there are not too many entries missing or the area to be inpainted is not too big, e will be sparse.

To summarize, we observe
z = Ax + Ie

and know that x, e are sparse. Based on the observation z, we want to recover x and e. Here is an
example of in-painting in action. The image on the right is reconstructed from the image on the
left:
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Figure 6: Inpainting.

6.2 Clipping

We observe z = ga(y), where the function ga(y) realizes entry-wise signal clipping to the interval
[−a, a].

Clipping can equivalently be modeled as

z = y + e

with e = ga(y)− y. Notice that the error locations can be determined by comparing the entries of
z to the clipping threshold a.

Consequently, we observe
z = Ax + Ie

where e can depend on A and x.

6.3 Recovery of signals subject to impulse noise

In this scenario, a spectrally sparse signal with unknown spectrum is (sparsely) corrupted by
impulses with unknown locations, i.e., we observe

z = Fx + Ie.

where F is the DFT matrix and I is the identity matrix.

6.4 Recovery of signals subject to narrowband interference

We observe a sparse signal corrupted by spectrally sparse noise, i.e.,

z = Ix + Fe.

where F is the DFT matrix and I is the identity matrix.
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7 Uncertainty principles and signal recovery

The main reference for this section is [6].

In all examples in Section 6.1 – Section 6.4 the dictionary D is the concatenation of two ONBs A
and B. In this case, refined bounds on spark(D) = spark([A B]) exist. We derive them next. In
the derivation, we will use an unexpected connection between the uncertainty principles, similar to
the ones used in physics, and signal recovery guarantees.

For a vector in the null-space of D = [A B], we have

[A B]

[
p
q

]
︸︷︷︸
v

= 0.

Hence,
Ap + Bq = 0⇒ Ap = B (−q) , s.

The signal s is represented in two different ways, namely as an expansion in the dictionary A and
as an expansion in the dictionary B.

Finding the vector v with minimum 0-norm among all vectors that satisfy

[A B]v = 0

amounts to answering the question: How sparse can p and q, the expansion coefficients of the same
vector s in two different ONBs, concurrently be? This is a question directly related to uncertainty
principle, as we explain next.

7.1 Uncertainty principles

Theorem 4. Let A,B ∈ Cm×m be two unitary matrices. Let Ap = −Bq. Then ‖p‖0‖q‖0 ≥
1/µ2([A B]).

Proof. Since A is unitary, left multiplication of the identity Ap = −Bq by AH yields p = −AHBq.
An entry of p satisfies

|pk| =
∣∣∣[AHBq]k

∣∣∣ =

∣∣∣∣∣∑
l

[AHB]k,lql

∣∣∣∣∣ ≤∑
l

|〈ak,bl〉| |ql|

≤ max
l
|〈ak,bl〉| ‖q‖1 ≤ µ([A B])‖q‖1.

Summation of k ∈ supp(p) yields

‖p‖1 ≤ ‖p‖0µ([A B])‖q‖1.

Left multiplication of the identity Ap = −Bq by BH similarly gives

‖q‖1 ≤ ‖q‖0µ([A B])‖p‖1.

Multiplying both inequalities together and rearranging the terms we obtain the result.
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Comparison to the classical uncertainty principle. In signal analysis, it is widely know that
the signal and its Fourier transform cannot simultaneously be tightly concentrated. This fact can
be expressed in many different ways. The classical way is in terms of concentration of the second
moment.

Assume that the function g(t) has unit norm:
∫∞
−∞ |g(t)|2 dt = 1. The uncertainty principle states

that ∫ ∞
−∞

t2 |g(t)|2 dt︸ ︷︷ ︸
concentration in time

×
∫ ∞
−∞

f2 |ĝ(f)|2 df︸ ︷︷ ︸
concentration in frequency

≥ 1

16π2
, (4)

where ĝ(f) is the Fourier transform of g(t).

If A = I (the identity matrix) and B = F (the DFT matrix), then p corresponds to g(·) and −q
corresponds to ĝ(·). The bound we derived before is of the same type as (4):

‖p‖0︸ ︷︷ ︸
concentration in time

× ‖q‖0︸︷︷︸
concentration in frequency

≥ 1/µ2([A B]).

7.2 Signal recovery guarantees

The uncertainty relation in Theorem 4 states that Ap + Bq = 0 is only possible if ‖p‖0‖q‖0 ≥
1/µ2([A B]).

In the case where D = [A B] is a concatenation of two ONBs, the dictionary coherence evaluates
to

µ(D) = max
i 6=j
|〈di,dj〉| = max

i,j
|〈ai,bj〉| .

How can these uncertainty relations be used to obtain recovery thresholds?
By assumption, we have

spark(D) ≥ ‖p‖0 + ‖q‖0 =

∥∥∥∥[pq
]∥∥∥∥

0

.

The arithmetic-mean – geometric-mean (AM-GM) inequality implies the following lower bound on
the spark:

spark(D) ≥ ‖p‖0 + ‖q‖0 ≥ 2
√
‖p‖0‖q‖0 ≥

2

µ(D)
. (5)

Recall that the solution to (P0) is unique if the sparsity of the signal s satisfies

s <
spark(D)

2
. (6)

If sparsity is upper-bounded by

s <
1

µ(D)

then (5) guarantees that (6) is satisfied and, therefore, (P0) will recover the signal successfully.
Compare this to the old threshold

s <
1

2

(
1 +

1

µ(D)

)
≈ 1

2µ(D)
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to observe that for dictionaries which are the concatenation of two ONBs we get an improvement
in the recovery threshold by a factor of two.

8 Square-root bottleneck

All sparsity thresholds we obtained so far are proportional to 1/µ(D). What is the largest sparsity
threshold we can obtain? How small can the dictionary coherence µ(D) possibly be?

Theorem 5 (Welch bound, [7]). Let D ∈ Cm×n be a dictionary with coherence µ(D). Then,

µ(D) ≥
√

n−m
m (n− 1)

,

where m ≤ n.

Proof. Set G = DHD ∈ Cn×n. Then, G has the following properties:

1. G has ones along its diagonal (since all dictionary columns have unit `2 norm);

2. G is positive semi-definite with rank (at most) m.

Let λ = (λ1, . . . , λm)T denote the vector of nonzero eigenvalues λi of G. Then, we have

tr (G) =

m∑
i=1

λi = ‖λ‖1 = n

‖G‖2F = tr
(
GTG

)
=
∑
i,j

GT
ijGij =

m∑
i=1

λ2i = ‖λ‖22.

Since (
1

m

m∑
i=1

λi

)2

≤ 1

m

m∑
i=1

λ2i

by Cauchy-Schwarz inequality, it follow that ‖λ‖21 ≤ m‖λ‖22, which implies in turn that

‖G‖2F ≥
n2

m
.

We thus have

‖G‖2F = n+

n∑
i=1

∑
j 6=i
|〈di,dj〉|2

≥ n2

m
,
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which finally yields

µ(D)2 ≥ 1

n(n− 1)

n∑
i=1

∑
j 6=i
|〈di,dj〉|2

≥ 1

n(n− 1)

(
n2

m
− n

)
=

n−m
m (n− 1)

.

For n� m the Welch lower bound implies

µ(D) ≥
√

n−m
m (n− 1)

≈ 1√
m

and hence all sparsity thresholds obtained so far obey the fundamental upper bound

s .
√
m ⇒ m & s2.

We see that there is a limit on all deterministic sparsity thresholds we have derived. We say that
the thresholds are bounded by the square-root bottleneck meaning that recovery is only guaranteed
if we take m ≈ s2 samples for an s-sparse signal.

Take, e.g., s = 30 and n = 1000. The square-root bottleneck implies that we would need ≈ 900
samples to get recovery through (P1) or OMP. This is very disappointing.

Hence, the question: Can we improve upon the scaling behavior s . m2?

Square-root bottleneck is tight. The answer is that the bound of the order s .
√
m is the best

we can obtain for general dictionaries D if recovery is to be guaranteed uniformly for all s-sparse
signals.

Consider the case D = [I − F], where I is the m ×m identity matrix and F is the m ×m DFT
matrix. Assume that m is a perfect square: m = η2, where η ∈ N. Let p = [p1, . . . , pm]T be defined
as

pl =

{
1, if l = 1 mod η

0, otherwise.

It turns out that the DFT of p, p̂ = [p̂1, . . . , p̂m]T = Fp is equal to p itself. This can be seen as
follows:

p̂j =
1

η

η2∑
l=1

ple
2πi(l−1)(j−1)/η2 =

1

η

η∑
k=1

e2πi(k−1)(j−1)/η =

{
1, if j = 1 mod η

0, otherwise.

This shows that p̂ = p. Therefore, Ip = Fp and Dx = 0 with x = [pT pT]T 6= 0. Any reasonable
reconstruction algorithm, having observed y = Dx = 0, will return x = 0. This is not a correct
answer, and, therefore, x cannot be recovered from y by any method whatsoever.
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At the same time ‖x‖0 = 2‖p‖0 = 2η = 2
√
m. We cannot recover arbitrary signals of sparsity

higher than 2
√
m when D = [I F].

It is easy to see (homework) that µ(D) = 1√
m

. Therefore, this example demonstrates that if the

sparsity bound is formulated in terms of coherence we cannot hope to get a bound better than

s ≤ 2

µ(D)
. (7)

We also conclude that the bound found in (5) is tight.

This means that the square-root bottleneck type bound cannot be improved for general dictionaries
without additional assumptions on the signal.

Breaking the square-root bottleneck. It turns out that much more optimistic results can be
obtained in many cases of practical relevance.

First, we will see that nonnegativity assumption on the elements of the signal will allow us to prove
a recovery result when s < m/2 in the case of super-resolution problem.

Second, we will see that s can scale linearly with m (up to logarithmic factors) if we allow for
randomized sampling, i.e. we will inject randomness in the construction of the sampling matrix.

Also, under mild assumptions on D it is possible to prove recovery results with s linear in m (up to
logarithmic factors) if we don’t insist on perfect recovery for all signals, but only for most signals
with random support.
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